M. Osman, L.Y. Chin, S.H. Adnan, M. Jeni, W.A.W. Jusoh, S. Salim, Nur Liza Rahim, J.J. Wysłocki
{"title":"使用膨胀聚苯乙烯珠和棕榈油燃料灰作为替代材料的钢筋混凝土梁的性能","authors":"M. Osman, L.Y. Chin, S.H. Adnan, M. Jeni, W.A.W. Jusoh, S. Salim, Nur Liza Rahim, J.J. Wysłocki","doi":"10.24425/amm.2024.149102","DOIUrl":null,"url":null,"abstract":"The Reinforced Concrete (RC) beams containing Expanded Polystyrene Beads (EPS) and Palm Oil Fuel Ash (POFA) as sand and cement replacement with a percentage between 10% and 30% were studied in terms of load-deflection behaviour. RC beam’s size was 1000×150×150 mm and simply supported at spaced 750 mm apart. The 10% of POFA without EPS shows a slight increase which is 0.26% higher than normal concrete in compressive strength. The ultimate load and flexural performance of RC beams with EPS and POFA exhibited a decreasing trend. All beams’ ultimate load exceeds the design value. The cracks of the RC beam may be classified as vertical flexural cracks, and some of the cracks can be classified as shear cracks based on the crack angle. As the percentage of EPS and POFA increases above 20% for all specimens, cracking starts to change to shear cracking.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The behaviour of Reinforced Concrete Beams by Using Expanded Polystyrene Beads and Palm Oil Fuel Ash as Replacement Materials\",\"authors\":\"M. Osman, L.Y. Chin, S.H. Adnan, M. Jeni, W.A.W. Jusoh, S. Salim, Nur Liza Rahim, J.J. Wysłocki\",\"doi\":\"10.24425/amm.2024.149102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Reinforced Concrete (RC) beams containing Expanded Polystyrene Beads (EPS) and Palm Oil Fuel Ash (POFA) as sand and cement replacement with a percentage between 10% and 30% were studied in terms of load-deflection behaviour. RC beam’s size was 1000×150×150 mm and simply supported at spaced 750 mm apart. The 10% of POFA without EPS shows a slight increase which is 0.26% higher than normal concrete in compressive strength. The ultimate load and flexural performance of RC beams with EPS and POFA exhibited a decreasing trend. All beams’ ultimate load exceeds the design value. The cracks of the RC beam may be classified as vertical flexural cracks, and some of the cracks can be classified as shear cracks based on the crack angle. As the percentage of EPS and POFA increases above 20% for all specimens, cracking starts to change to shear cracking.\",\"PeriodicalId\":8304,\"journal\":{\"name\":\"Archives of Metallurgy and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Metallurgy and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.24425/amm.2024.149102\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Metallurgy and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.24425/amm.2024.149102","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The behaviour of Reinforced Concrete Beams by Using Expanded Polystyrene Beads and Palm Oil Fuel Ash as Replacement Materials
The Reinforced Concrete (RC) beams containing Expanded Polystyrene Beads (EPS) and Palm Oil Fuel Ash (POFA) as sand and cement replacement with a percentage between 10% and 30% were studied in terms of load-deflection behaviour. RC beam’s size was 1000×150×150 mm and simply supported at spaced 750 mm apart. The 10% of POFA without EPS shows a slight increase which is 0.26% higher than normal concrete in compressive strength. The ultimate load and flexural performance of RC beams with EPS and POFA exhibited a decreasing trend. All beams’ ultimate load exceeds the design value. The cracks of the RC beam may be classified as vertical flexural cracks, and some of the cracks can be classified as shear cracks based on the crack angle. As the percentage of EPS and POFA increases above 20% for all specimens, cracking starts to change to shear cracking.
期刊介绍:
The Archives of Metallurgy and Materials is covered in the following Institute for Scientific Information products: SciSearch (the Science Citation Index - Expanded), Research Alert, Materials Science Citation Index, and Current Contents / Engineering, Computing and Technology.
Articles published in the Archives of Metallurgy and Materials are also indexed or abstracted by Cambridge Scientific Abstracts.