{"title":"基于 SGX 的电力信息收集和管理系统的设计与实施","authors":"Yao Song, Kun Zhu","doi":"10.4108/ew.5756","DOIUrl":null,"url":null,"abstract":"With the rapid growth of the number and scale of smart grid users, traditional data encryption transmission methods can no longer meet the performance requirements of data aggregation. In response, a power consumption information collection and management system based on SGX software protection extension is proposed. The system mainly consists of three parts: user electricity data acquisition terminal, SGX data security processing and distributed storage module on the chain, and data monitoring management display platform. The user electricity data collection terminal collects electricity data from various buildings, residences, rooms, and other smart meters, analyzes and uploads it. After calling the trusted function of SGX technology, it enters the security zone provided by SGX for data processing. Finally, the data security processing results and data are uploaded to the blockchain for storage. In order to visually display user electricity usage data, an intelligent monitoring platform for user electricity collection and management has been established. This system can reduce the workload of user electricity data collection, ensure the accuracy of data collection, and provide an efficient and highly reliable system platform for user electricity data management.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"10 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of an SGX Based Electricity Information Collection and Management System\",\"authors\":\"Yao Song, Kun Zhu\",\"doi\":\"10.4108/ew.5756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of the number and scale of smart grid users, traditional data encryption transmission methods can no longer meet the performance requirements of data aggregation. In response, a power consumption information collection and management system based on SGX software protection extension is proposed. The system mainly consists of three parts: user electricity data acquisition terminal, SGX data security processing and distributed storage module on the chain, and data monitoring management display platform. The user electricity data collection terminal collects electricity data from various buildings, residences, rooms, and other smart meters, analyzes and uploads it. After calling the trusted function of SGX technology, it enters the security zone provided by SGX for data processing. Finally, the data security processing results and data are uploaded to the blockchain for storage. In order to visually display user electricity usage data, an intelligent monitoring platform for user electricity collection and management has been established. This system can reduce the workload of user electricity data collection, ensure the accuracy of data collection, and provide an efficient and highly reliable system platform for user electricity data management.\",\"PeriodicalId\":53458,\"journal\":{\"name\":\"EAI Endorsed Transactions on Energy Web\",\"volume\":\"10 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Energy Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ew.5756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.5756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Design and Implementation of an SGX Based Electricity Information Collection and Management System
With the rapid growth of the number and scale of smart grid users, traditional data encryption transmission methods can no longer meet the performance requirements of data aggregation. In response, a power consumption information collection and management system based on SGX software protection extension is proposed. The system mainly consists of three parts: user electricity data acquisition terminal, SGX data security processing and distributed storage module on the chain, and data monitoring management display platform. The user electricity data collection terminal collects electricity data from various buildings, residences, rooms, and other smart meters, analyzes and uploads it. After calling the trusted function of SGX technology, it enters the security zone provided by SGX for data processing. Finally, the data security processing results and data are uploaded to the blockchain for storage. In order to visually display user electricity usage data, an intelligent monitoring platform for user electricity collection and management has been established. This system can reduce the workload of user electricity data collection, ensure the accuracy of data collection, and provide an efficient and highly reliable system platform for user electricity data management.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.