Vahid Isazade, Abdul Baser Qasimi, Abdulla Al Kafy, Pinliang Dong, Mustafa Mohammadi
{"title":"利用机器学习和地理信息系统技术模拟阿富汗萨曼甘省的洪水易发区","authors":"Vahid Isazade, Abdul Baser Qasimi, Abdulla Al Kafy, Pinliang Dong, Mustafa Mohammadi","doi":"10.3846/gac.2024.18555","DOIUrl":null,"url":null,"abstract":"Flood events are the most sophisticated and damaging natural hazard compared to other natural catastrophes. Every year, this hazard causes human-financial losses and damage to croplands in different locations worldwide. This research employs a combination of artificial neural networks and geographic information systems (GIS) to simulate flood-vulnerable locations in the Samangan Province of Afghanistan. First, flood-influencing factors, such as soil, slope layer, elevation, flow direction, and land use/cover, were evaluated as influential factors in simulating flood-prone areas. These factors were imported into GIS software. The Fishnet command was used to partition the information layers. Furthermore, each layer was converted into points, and this data was fed into the perceptron neural network along with the educational data obtained from Google Earth. In the perceptron neural network, the input layers have five neurons and 16 nodes, and the outputs showed that elevation had the lowest possible weight (R2 = 0.713) and flow direction had the highest weight (R2 = 0.913). This study demonstrated that combining GIS and artificial neural networks results in acceptable performance for simulating and modeling flood susceptible areas in different geographical locations and significantly helps prevent or reduce flood hazards.","PeriodicalId":502308,"journal":{"name":"Geodesy and cartography","volume":"25 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIMULATION OF FLOOD-PRONE AREAS USING MACHINE LEARNING AND GIS TECHNIQUES IN SAMANGAN PROVINCE, AFGHANISTAN\",\"authors\":\"Vahid Isazade, Abdul Baser Qasimi, Abdulla Al Kafy, Pinliang Dong, Mustafa Mohammadi\",\"doi\":\"10.3846/gac.2024.18555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flood events are the most sophisticated and damaging natural hazard compared to other natural catastrophes. Every year, this hazard causes human-financial losses and damage to croplands in different locations worldwide. This research employs a combination of artificial neural networks and geographic information systems (GIS) to simulate flood-vulnerable locations in the Samangan Province of Afghanistan. First, flood-influencing factors, such as soil, slope layer, elevation, flow direction, and land use/cover, were evaluated as influential factors in simulating flood-prone areas. These factors were imported into GIS software. The Fishnet command was used to partition the information layers. Furthermore, each layer was converted into points, and this data was fed into the perceptron neural network along with the educational data obtained from Google Earth. In the perceptron neural network, the input layers have five neurons and 16 nodes, and the outputs showed that elevation had the lowest possible weight (R2 = 0.713) and flow direction had the highest weight (R2 = 0.913). This study demonstrated that combining GIS and artificial neural networks results in acceptable performance for simulating and modeling flood susceptible areas in different geographical locations and significantly helps prevent or reduce flood hazards.\",\"PeriodicalId\":502308,\"journal\":{\"name\":\"Geodesy and cartography\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and cartography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/gac.2024.18555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/gac.2024.18555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SIMULATION OF FLOOD-PRONE AREAS USING MACHINE LEARNING AND GIS TECHNIQUES IN SAMANGAN PROVINCE, AFGHANISTAN
Flood events are the most sophisticated and damaging natural hazard compared to other natural catastrophes. Every year, this hazard causes human-financial losses and damage to croplands in different locations worldwide. This research employs a combination of artificial neural networks and geographic information systems (GIS) to simulate flood-vulnerable locations in the Samangan Province of Afghanistan. First, flood-influencing factors, such as soil, slope layer, elevation, flow direction, and land use/cover, were evaluated as influential factors in simulating flood-prone areas. These factors were imported into GIS software. The Fishnet command was used to partition the information layers. Furthermore, each layer was converted into points, and this data was fed into the perceptron neural network along with the educational data obtained from Google Earth. In the perceptron neural network, the input layers have five neurons and 16 nodes, and the outputs showed that elevation had the lowest possible weight (R2 = 0.713) and flow direction had the highest weight (R2 = 0.913). This study demonstrated that combining GIS and artificial neural networks results in acceptable performance for simulating and modeling flood susceptible areas in different geographical locations and significantly helps prevent or reduce flood hazards.