A. Areces-Gonzalez, D. Paz-Linares, Usama Riaz, Ying Wang, Min Li, F. A. Razzaq, Jorge Bosch-Bayard, E. González-Moreira, M. Ontivero-Ortega, L. Galán-García, E. Martínez-Montes, Ludovico Minati, Mitchell Valdés-Sosa, M. Bringas-Vega, P. Valdés-Sosa
{"title":"CiftiStorm 管道:促进可重复的脑电图/MEG 信号源连接组学研究","authors":"A. Areces-Gonzalez, D. Paz-Linares, Usama Riaz, Ying Wang, Min Li, F. A. Razzaq, Jorge Bosch-Bayard, E. González-Moreira, M. Ontivero-Ortega, L. Galán-García, E. Martínez-Montes, Ludovico Minati, Mitchell Valdés-Sosa, M. Bringas-Vega, P. Valdés-Sosa","doi":"10.3389/fnins.2024.1237245","DOIUrl":null,"url":null,"abstract":"We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"9 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CiftiStorm pipeline: facilitating reproducible EEG/MEG source connectomics\",\"authors\":\"A. Areces-Gonzalez, D. Paz-Linares, Usama Riaz, Ying Wang, Min Li, F. A. Razzaq, Jorge Bosch-Bayard, E. González-Moreira, M. Ontivero-Ortega, L. Galán-García, E. Martínez-Montes, Ludovico Minati, Mitchell Valdés-Sosa, M. Bringas-Vega, P. Valdés-Sosa\",\"doi\":\"10.3389/fnins.2024.1237245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.\",\"PeriodicalId\":509131,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2024.1237245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnins.2024.1237245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.