CiftiStorm 管道:促进可重复的脑电图/MEG 信号源连接组学研究

A. Areces-Gonzalez, D. Paz-Linares, Usama Riaz, Ying Wang, Min Li, F. A. Razzaq, Jorge Bosch-Bayard, E. González-Moreira, M. Ontivero-Ortega, L. Galán-García, E. Martínez-Montes, Ludovico Minati, Mitchell Valdés-Sosa, M. Bringas-Vega, P. Valdés-Sosa
{"title":"CiftiStorm 管道:促进可重复的脑电图/MEG 信号源连接组学研究","authors":"A. Areces-Gonzalez, D. Paz-Linares, Usama Riaz, Ying Wang, Min Li, F. A. Razzaq, Jorge Bosch-Bayard, E. González-Moreira, M. Ontivero-Ortega, L. Galán-García, E. Martínez-Montes, Ludovico Minati, Mitchell Valdés-Sosa, M. Bringas-Vega, P. Valdés-Sosa","doi":"10.3389/fnins.2024.1237245","DOIUrl":null,"url":null,"abstract":"We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"9 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CiftiStorm pipeline: facilitating reproducible EEG/MEG source connectomics\",\"authors\":\"A. Areces-Gonzalez, D. Paz-Linares, Usama Riaz, Ying Wang, Min Li, F. A. Razzaq, Jorge Bosch-Bayard, E. González-Moreira, M. Ontivero-Ortega, L. Galán-García, E. Martínez-Montes, Ludovico Minati, Mitchell Valdés-Sosa, M. Bringas-Vega, P. Valdés-Sosa\",\"doi\":\"10.3389/fnins.2024.1237245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.\",\"PeriodicalId\":509131,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2024.1237245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnins.2024.1237245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍的 CiftiStorm 是一种电生理源成像(ESI)管道,它采用了最近开发的方法来改进正向和逆向求解。CiftiStorm 管道可从具有不同空间分辨率的数据集输入生成符合人类连接组计划(HCP)和巨连接组计划的输出结果。输入数据的范围包括未进行结构性磁共振成像(sMRI)的低传感器密度脑电图(EEG)或脑磁图(MEG)记录,以及符合 HCP 多模态 sMRI 协议的高密度脑电图/MEG 记录。CiftiStorm 为正向建模引入了导联场的数值质量控制以及头部和源模型的几何校正。对于反向建模,我们提出了基于多重先验的源交叉谱贝叶斯估计。我们促进了从单个 sMRI 获取的 T1w/FSAverage32k 高分辨率空间中的 ESI。我们通过比较古巴人类脑图谱项目(CHBMP)的脑电图和核磁共振成像数据的 CiftiStorm 输出结果,验证了这一功能,古巴人类脑图谱项目采用的技术比 HCP 脑电图和核磁共振成像标准化数据集早了十年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CiftiStorm pipeline: facilitating reproducible EEG/MEG source connectomics
We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信