使用去模糊模糊内核对湍流图像进行去模糊处理

Lizhen Duan, Libo Zhong, Jianlin Zhang
{"title":"使用去模糊模糊内核对湍流图像进行去模糊处理","authors":"Lizhen Duan, Libo Zhong, Jianlin Zhang","doi":"10.1088/2040-8986/ad3e0e","DOIUrl":null,"url":null,"abstract":"\n In the context of addressing a noisy turbulence-degraded image, it is common to use a denoising low-pass filter before implementing a deblurring algorithm. However, this filter not only suppresses noise but also induces a certain degree of blur into the degraded image. This blur effect causes a blurred estimate of the true blur kernel and ultimately leads to a distorted estimate of the latent clear image. To tackle this issue, this paper presents an innovative single-image deblurring method. It integrates a dedicated blur kernel deblurring step to mitigate the effects of the denoising filter. The L0 norm and L2 norm serve as the respective constraints for latent clear image and blur kernel. Experimental results on both synthetic and real-world turbulence-degraded images demonstrate the effectiveness and efficiency of the proposed method.","PeriodicalId":509797,"journal":{"name":"Journal of Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulent image deblurring using a deblurred blur kernel\",\"authors\":\"Lizhen Duan, Libo Zhong, Jianlin Zhang\",\"doi\":\"10.1088/2040-8986/ad3e0e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the context of addressing a noisy turbulence-degraded image, it is common to use a denoising low-pass filter before implementing a deblurring algorithm. However, this filter not only suppresses noise but also induces a certain degree of blur into the degraded image. This blur effect causes a blurred estimate of the true blur kernel and ultimately leads to a distorted estimate of the latent clear image. To tackle this issue, this paper presents an innovative single-image deblurring method. It integrates a dedicated blur kernel deblurring step to mitigate the effects of the denoising filter. The L0 norm and L2 norm serve as the respective constraints for latent clear image and blur kernel. Experimental results on both synthetic and real-world turbulence-degraded images demonstrate the effectiveness and efficiency of the proposed method.\",\"PeriodicalId\":509797,\"journal\":{\"name\":\"Journal of Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2040-8986/ad3e0e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad3e0e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在处理有噪声的湍流降解图像时,通常先使用去噪低通滤波器,然后再实施去模糊算法。然而,这种滤波器不仅会抑制噪声,还会对降解图像造成一定程度的模糊。这种模糊效应会造成对真实模糊内核的估计模糊,最终导致对潜在清晰图像的估计失真。为解决这一问题,本文提出了一种创新的单图像去模糊方法。它集成了一个专门的模糊核去模糊步骤,以减轻去噪滤波器的影响。L0 准则和 L2 准则分别作为潜在清晰图像和模糊核的约束条件。在合成和真实世界湍流降解图像上的实验结果证明了所提方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turbulent image deblurring using a deblurred blur kernel
In the context of addressing a noisy turbulence-degraded image, it is common to use a denoising low-pass filter before implementing a deblurring algorithm. However, this filter not only suppresses noise but also induces a certain degree of blur into the degraded image. This blur effect causes a blurred estimate of the true blur kernel and ultimately leads to a distorted estimate of the latent clear image. To tackle this issue, this paper presents an innovative single-image deblurring method. It integrates a dedicated blur kernel deblurring step to mitigate the effects of the denoising filter. The L0 norm and L2 norm serve as the respective constraints for latent clear image and blur kernel. Experimental results on both synthetic and real-world turbulence-degraded images demonstrate the effectiveness and efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信