NeoAgDT:通过对癌细胞群进行数字孪生模拟,优化个人新抗原疫苗成分。

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Anja Mösch, Filippo Grazioli, Pierre Machart, Brandon Malone
{"title":"NeoAgDT:通过对癌细胞群进行数字孪生模拟,优化个人新抗原疫苗成分。","authors":"Anja Mösch, Filippo Grazioli, Pierre Machart, Brandon Malone","doi":"10.1093/bioinformatics/btae205","DOIUrl":null,"url":null,"abstract":"MOTIVATION\nNeoantigen vaccines make use of tumor-specific mutations to enable the patient's immune system to recognize and eliminate cancer. Selecting vaccine elements, however, is a complex task which needs to take into account not only the underlying antigen presentation pathway but also tumor heterogeneity.\n\n\nRESULTS\nHere, we present NeoAgDT, a two-step approach consisting of: (1) simulating individual cancer cells to create a digital twin of the patient's tumor cell population and (2) optimizing the vaccine composition by integer linear programming based on this digital twin. NeoAgDT shows improved selection of experimentally-validated neoantigens over ranking-based approaches in a study of seven patients.\n\n\nAVAILABILITY\nThe NeoAgDT code is published on Github: https://github.com/nec-research/neoagdt.\n\n\nSUPPLEMENTARY INFORMATION\nSupplementary data are available at Bioinformatics online.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NeoAgDT: Optimization of personal neoantigen vaccine composition by digital twin simulation of a cancer cell population.\",\"authors\":\"Anja Mösch, Filippo Grazioli, Pierre Machart, Brandon Malone\",\"doi\":\"10.1093/bioinformatics/btae205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MOTIVATION\\nNeoantigen vaccines make use of tumor-specific mutations to enable the patient's immune system to recognize and eliminate cancer. Selecting vaccine elements, however, is a complex task which needs to take into account not only the underlying antigen presentation pathway but also tumor heterogeneity.\\n\\n\\nRESULTS\\nHere, we present NeoAgDT, a two-step approach consisting of: (1) simulating individual cancer cells to create a digital twin of the patient's tumor cell population and (2) optimizing the vaccine composition by integer linear programming based on this digital twin. NeoAgDT shows improved selection of experimentally-validated neoantigens over ranking-based approaches in a study of seven patients.\\n\\n\\nAVAILABILITY\\nThe NeoAgDT code is published on Github: https://github.com/nec-research/neoagdt.\\n\\n\\nSUPPLEMENTARY INFORMATION\\nSupplementary data are available at Bioinformatics online.\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae205\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae205","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

动机新抗原疫苗利用肿瘤特异性突变使患者的免疫系统能够识别并消灭癌症。结果在这里,我们介绍了 NeoAgDT,这是一种分两步进行的方法,包括:(1)模拟单个癌细胞,创建患者肿瘤细胞群的数字孪生体;(2)在此数字孪生体的基础上,通过整数线性规划优化疫苗组成。在一项针对七名患者的研究中,NeoAgDT显示实验验证的新抗原选择比基于排序的方法有所改进。可用性NeoAgDT代码发布在Github上:https://github.com/nec-research/neoagdt.SUPPLEMENTARY 信息补充数据可在Bioinformatics online上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NeoAgDT: Optimization of personal neoantigen vaccine composition by digital twin simulation of a cancer cell population.
MOTIVATION Neoantigen vaccines make use of tumor-specific mutations to enable the patient's immune system to recognize and eliminate cancer. Selecting vaccine elements, however, is a complex task which needs to take into account not only the underlying antigen presentation pathway but also tumor heterogeneity. RESULTS Here, we present NeoAgDT, a two-step approach consisting of: (1) simulating individual cancer cells to create a digital twin of the patient's tumor cell population and (2) optimizing the vaccine composition by integer linear programming based on this digital twin. NeoAgDT shows improved selection of experimentally-validated neoantigens over ranking-based approaches in a study of seven patients. AVAILABILITY The NeoAgDT code is published on Github: https://github.com/nec-research/neoagdt. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信