Anja Mösch, Filippo Grazioli, Pierre Machart, Brandon Malone
{"title":"NeoAgDT:通过对癌细胞群进行数字孪生模拟,优化个人新抗原疫苗成分。","authors":"Anja Mösch, Filippo Grazioli, Pierre Machart, Brandon Malone","doi":"10.1093/bioinformatics/btae205","DOIUrl":null,"url":null,"abstract":"MOTIVATION\nNeoantigen vaccines make use of tumor-specific mutations to enable the patient's immune system to recognize and eliminate cancer. Selecting vaccine elements, however, is a complex task which needs to take into account not only the underlying antigen presentation pathway but also tumor heterogeneity.\n\n\nRESULTS\nHere, we present NeoAgDT, a two-step approach consisting of: (1) simulating individual cancer cells to create a digital twin of the patient's tumor cell population and (2) optimizing the vaccine composition by integer linear programming based on this digital twin. NeoAgDT shows improved selection of experimentally-validated neoantigens over ranking-based approaches in a study of seven patients.\n\n\nAVAILABILITY\nThe NeoAgDT code is published on Github: https://github.com/nec-research/neoagdt.\n\n\nSUPPLEMENTARY INFORMATION\nSupplementary data are available at Bioinformatics online.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NeoAgDT: Optimization of personal neoantigen vaccine composition by digital twin simulation of a cancer cell population.\",\"authors\":\"Anja Mösch, Filippo Grazioli, Pierre Machart, Brandon Malone\",\"doi\":\"10.1093/bioinformatics/btae205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MOTIVATION\\nNeoantigen vaccines make use of tumor-specific mutations to enable the patient's immune system to recognize and eliminate cancer. Selecting vaccine elements, however, is a complex task which needs to take into account not only the underlying antigen presentation pathway but also tumor heterogeneity.\\n\\n\\nRESULTS\\nHere, we present NeoAgDT, a two-step approach consisting of: (1) simulating individual cancer cells to create a digital twin of the patient's tumor cell population and (2) optimizing the vaccine composition by integer linear programming based on this digital twin. NeoAgDT shows improved selection of experimentally-validated neoantigens over ranking-based approaches in a study of seven patients.\\n\\n\\nAVAILABILITY\\nThe NeoAgDT code is published on Github: https://github.com/nec-research/neoagdt.\\n\\n\\nSUPPLEMENTARY INFORMATION\\nSupplementary data are available at Bioinformatics online.\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae205\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae205","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
NeoAgDT: Optimization of personal neoantigen vaccine composition by digital twin simulation of a cancer cell population.
MOTIVATION
Neoantigen vaccines make use of tumor-specific mutations to enable the patient's immune system to recognize and eliminate cancer. Selecting vaccine elements, however, is a complex task which needs to take into account not only the underlying antigen presentation pathway but also tumor heterogeneity.
RESULTS
Here, we present NeoAgDT, a two-step approach consisting of: (1) simulating individual cancer cells to create a digital twin of the patient's tumor cell population and (2) optimizing the vaccine composition by integer linear programming based on this digital twin. NeoAgDT shows improved selection of experimentally-validated neoantigens over ranking-based approaches in a study of seven patients.
AVAILABILITY
The NeoAgDT code is published on Github: https://github.com/nec-research/neoagdt.
SUPPLEMENTARY INFORMATION
Supplementary data are available at Bioinformatics online.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.