基于对称和非对称平衡损失函数的反韦布勒分布贝叶斯推断及其应用

Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samsin Balogun, M. E. Bakr
{"title":"基于对称和非对称平衡损失函数的反韦布勒分布贝叶斯推断及其应用","authors":"Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samsin Balogun, M. E. Bakr","doi":"10.17531/ein/187158","DOIUrl":null,"url":null,"abstract":"In this study, the unified hybrid censored approach is employed to estimate the parameters of the inverse Weibull distribution, as well as the survival and hazard rate functions. Parameter estimates are obtained using both Bayesian and Maximum Likelihood approaches, with Bayesian estimates acquired through Lindley's approximation method using three distinct balanced loss functions. These encompass both symmetric and asymmetric balanced loss functions, specifically the balanced squared error (BSE) loss function, the balanced linear exponential (BLINEX) loss function, and the balanced general entropy (BGE) loss function. We conduct a simulation study to compare the effectiveness of various estimators, and a real-world data analysis is presented to illustrate practical implementation. Ultimately, our findings indicate that Bayesian parameter estimates consistently outperform their Maximum Likelihood counterparts across all methods.","PeriodicalId":508934,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian inference for the inverse Weibull distribution based on symmetric and asymmetric balanced loss functions with application\",\"authors\":\"Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samsin Balogun, M. E. Bakr\",\"doi\":\"10.17531/ein/187158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the unified hybrid censored approach is employed to estimate the parameters of the inverse Weibull distribution, as well as the survival and hazard rate functions. Parameter estimates are obtained using both Bayesian and Maximum Likelihood approaches, with Bayesian estimates acquired through Lindley's approximation method using three distinct balanced loss functions. These encompass both symmetric and asymmetric balanced loss functions, specifically the balanced squared error (BSE) loss function, the balanced linear exponential (BLINEX) loss function, and the balanced general entropy (BGE) loss function. We conduct a simulation study to compare the effectiveness of various estimators, and a real-world data analysis is presented to illustrate practical implementation. Ultimately, our findings indicate that Bayesian parameter estimates consistently outperform their Maximum Likelihood counterparts across all methods.\",\"PeriodicalId\":508934,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/187158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/187158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用了统一的混合删减法来估计反向威布尔分布的参数以及生存率和危险率函数。参数估计采用贝叶斯法和最大似然法,其中贝叶斯法估计是通过林德利近似法使用三种不同的平衡损失函数获得的。这些平衡损失函数包括对称和非对称平衡损失函数,特别是平衡平方误差(BSE)损失函数、平衡线性指数(BLINEX)损失函数和平衡一般熵(BGE)损失函数。我们进行了一项模拟研究,以比较各种估计器的有效性,并通过实际数据分析来说明实际应用情况。最终,我们的研究结果表明,在所有方法中,贝叶斯参数估计始终优于最大似然估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian inference for the inverse Weibull distribution based on symmetric and asymmetric balanced loss functions with application
In this study, the unified hybrid censored approach is employed to estimate the parameters of the inverse Weibull distribution, as well as the survival and hazard rate functions. Parameter estimates are obtained using both Bayesian and Maximum Likelihood approaches, with Bayesian estimates acquired through Lindley's approximation method using three distinct balanced loss functions. These encompass both symmetric and asymmetric balanced loss functions, specifically the balanced squared error (BSE) loss function, the balanced linear exponential (BLINEX) loss function, and the balanced general entropy (BGE) loss function. We conduct a simulation study to compare the effectiveness of various estimators, and a real-world data analysis is presented to illustrate practical implementation. Ultimately, our findings indicate that Bayesian parameter estimates consistently outperform their Maximum Likelihood counterparts across all methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信