Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samsin Balogun, M. E. Bakr
{"title":"基于对称和非对称平衡损失函数的反韦布勒分布贝叶斯推断及其应用","authors":"Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samsin Balogun, M. E. Bakr","doi":"10.17531/ein/187158","DOIUrl":null,"url":null,"abstract":"In this study, the unified hybrid censored approach is employed to estimate the parameters of the inverse Weibull distribution, as well as the survival and hazard rate functions. Parameter estimates are obtained using both Bayesian and Maximum Likelihood approaches, with Bayesian estimates acquired through Lindley's approximation method using three distinct balanced loss functions. These encompass both symmetric and asymmetric balanced loss functions, specifically the balanced squared error (BSE) loss function, the balanced linear exponential (BLINEX) loss function, and the balanced general entropy (BGE) loss function. We conduct a simulation study to compare the effectiveness of various estimators, and a real-world data analysis is presented to illustrate practical implementation. Ultimately, our findings indicate that Bayesian parameter estimates consistently outperform their Maximum Likelihood counterparts across all methods.","PeriodicalId":508934,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian inference for the inverse Weibull distribution based on symmetric and asymmetric balanced loss functions with application\",\"authors\":\"Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samsin Balogun, M. E. Bakr\",\"doi\":\"10.17531/ein/187158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the unified hybrid censored approach is employed to estimate the parameters of the inverse Weibull distribution, as well as the survival and hazard rate functions. Parameter estimates are obtained using both Bayesian and Maximum Likelihood approaches, with Bayesian estimates acquired through Lindley's approximation method using three distinct balanced loss functions. These encompass both symmetric and asymmetric balanced loss functions, specifically the balanced squared error (BSE) loss function, the balanced linear exponential (BLINEX) loss function, and the balanced general entropy (BGE) loss function. We conduct a simulation study to compare the effectiveness of various estimators, and a real-world data analysis is presented to illustrate practical implementation. Ultimately, our findings indicate that Bayesian parameter estimates consistently outperform their Maximum Likelihood counterparts across all methods.\",\"PeriodicalId\":508934,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/187158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/187158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian inference for the inverse Weibull distribution based on symmetric and asymmetric balanced loss functions with application
In this study, the unified hybrid censored approach is employed to estimate the parameters of the inverse Weibull distribution, as well as the survival and hazard rate functions. Parameter estimates are obtained using both Bayesian and Maximum Likelihood approaches, with Bayesian estimates acquired through Lindley's approximation method using three distinct balanced loss functions. These encompass both symmetric and asymmetric balanced loss functions, specifically the balanced squared error (BSE) loss function, the balanced linear exponential (BLINEX) loss function, and the balanced general entropy (BGE) loss function. We conduct a simulation study to compare the effectiveness of various estimators, and a real-world data analysis is presented to illustrate practical implementation. Ultimately, our findings indicate that Bayesian parameter estimates consistently outperform their Maximum Likelihood counterparts across all methods.