{"title":"每个非正则子群的正则都很小的有限 p$ 群","authors":"Lu Gong","doi":"10.15672/hujms.1362734","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite non-Dedekindian $p$-group which satisfies $N_G(H)=HZ(G)$ for each nonnormal subgroup $H$, we call it an $NS$-group. \nIn this paper, it is proved that an $NS$-group is the product of minimal nonabelian group and the center.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite $p$-groups in which the normalizer of each nonnormal subgroup is small\",\"authors\":\"Lu Gong\",\"doi\":\"10.15672/hujms.1362734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a finite non-Dedekindian $p$-group which satisfies $N_G(H)=HZ(G)$ for each nonnormal subgroup $H$, we call it an $NS$-group. \\nIn this paper, it is proved that an $NS$-group is the product of minimal nonabelian group and the center.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1362734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1362734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite $p$-groups in which the normalizer of each nonnormal subgroup is small
Let $G$ be a finite non-Dedekindian $p$-group which satisfies $N_G(H)=HZ(G)$ for each nonnormal subgroup $H$, we call it an $NS$-group.
In this paper, it is proved that an $NS$-group is the product of minimal nonabelian group and the center.