"什么线不能用尺子量?数学与美学中的谜语与概念形成

Q2 Arts and Humanities
Samuel Wheeler, William Brenner
{"title":"\"什么线不能用尺子量?数学与美学中的谜语与概念形成","authors":"Samuel Wheeler, William Brenner","doi":"10.15845/nwr.v13.3691","DOIUrl":null,"url":null,"abstract":"We analyze two problems in mathematics – the first (stated in our title) is extracted from Wittgenstein’s “Philosophy for Mathematicians”; the second (“What set of numbers is non-denumerable?”) is taken from Cantor. We then consider, by way of comparison, a problem in musical aesthetics concerning a Brahms variation on a theme by Haydn. Our aim is to bring out and elucidate the essentially riddle-like character of these problems.","PeriodicalId":31828,"journal":{"name":"Nordic Wittgenstein Review","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“What Line Can’t Be Measured With a Ruler?”: Riddles and Concept-Formation in Mathematics and Aesthetics\",\"authors\":\"Samuel Wheeler, William Brenner\",\"doi\":\"10.15845/nwr.v13.3691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze two problems in mathematics – the first (stated in our title) is extracted from Wittgenstein’s “Philosophy for Mathematicians”; the second (“What set of numbers is non-denumerable?”) is taken from Cantor. We then consider, by way of comparison, a problem in musical aesthetics concerning a Brahms variation on a theme by Haydn. Our aim is to bring out and elucidate the essentially riddle-like character of these problems.\",\"PeriodicalId\":31828,\"journal\":{\"name\":\"Nordic Wittgenstein Review\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nordic Wittgenstein Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15845/nwr.v13.3691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Wittgenstein Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15845/nwr.v13.3691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了两个数学问题--第一个问题(如标题所述)摘自维特根斯坦的《数学家的哲学》;第二个问题("哪一组数是不可数的?")摘自康托尔。然后,我们通过比较的方式,考虑了一个音乐美学问题,涉及勃拉姆斯对海顿主题的变奏。我们的目的是揭示和阐明这些问题本质上的谜语性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
“What Line Can’t Be Measured With a Ruler?”: Riddles and Concept-Formation in Mathematics and Aesthetics
We analyze two problems in mathematics – the first (stated in our title) is extracted from Wittgenstein’s “Philosophy for Mathematicians”; the second (“What set of numbers is non-denumerable?”) is taken from Cantor. We then consider, by way of comparison, a problem in musical aesthetics concerning a Brahms variation on a theme by Haydn. Our aim is to bring out and elucidate the essentially riddle-like character of these problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nordic Wittgenstein Review
Nordic Wittgenstein Review Arts and Humanities-Philosophy
CiteScore
0.40
自引率
0.00%
发文量
10
审稿时长
40 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信