有循环或路径的图形连接积的局部距离反魔术色度数

Pub Date : 2024-04-14 DOI:10.15672/hujms.1266085
W. Shiu, G. Lau, Nalliah M
{"title":"有循环或路径的图形连接积的局部距离反魔术色度数","authors":"W. Shiu, G. Lau, Nalliah M","doi":"10.15672/hujms.1266085","DOIUrl":null,"url":null,"abstract":"Let G be a graph of order p without isolated vertices. A bijection f : V → {1, 2, 3, . . . , p} is called a local distance antimagic labeling, if wf (u) ̸= wf (v) for every edge uv of G, where wf(u) =ΣxϵN(u) f(x). The local distance antimagic chromatic number χlda(G) is defined to be the minimum number of colors taken over all colorings of G induced by local distance antimagic labelings of G. In this paper, we determined the local distance antimagic chromatic number of some cycles, paths, disjoint union of 3-paths. We also determined the local distance antimagic chromatic number of join products of some graphs with cycles or paths.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Distance Antimagic Chromatic Number of Join Product of Graphs with Cycles or Paths\",\"authors\":\"W. Shiu, G. Lau, Nalliah M\",\"doi\":\"10.15672/hujms.1266085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a graph of order p without isolated vertices. A bijection f : V → {1, 2, 3, . . . , p} is called a local distance antimagic labeling, if wf (u) ̸= wf (v) for every edge uv of G, where wf(u) =ΣxϵN(u) f(x). The local distance antimagic chromatic number χlda(G) is defined to be the minimum number of colors taken over all colorings of G induced by local distance antimagic labelings of G. In this paper, we determined the local distance antimagic chromatic number of some cycles, paths, disjoint union of 3-paths. We also determined the local distance antimagic chromatic number of join products of some graphs with cycles or paths.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1266085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1266085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是阶数为 p 的无孤立顶点的图。双射 f : V → {1, 2, 3, ., p} 的双射,如果对于 G 的每一条边 uv,wf(u)̸= wf(v),其中 wf(u) =ΣxϵN(u) f(x),则称为局部距离反魔术标记。本文确定了一些循环、路径、3 路径不相交联合的局部距离反魔术色度数。我们还确定了一些图形与循环或路径的连接积的局部距离反魔术色度数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local Distance Antimagic Chromatic Number of Join Product of Graphs with Cycles or Paths
Let G be a graph of order p without isolated vertices. A bijection f : V → {1, 2, 3, . . . , p} is called a local distance antimagic labeling, if wf (u) ̸= wf (v) for every edge uv of G, where wf(u) =ΣxϵN(u) f(x). The local distance antimagic chromatic number χlda(G) is defined to be the minimum number of colors taken over all colorings of G induced by local distance antimagic labelings of G. In this paper, we determined the local distance antimagic chromatic number of some cycles, paths, disjoint union of 3-paths. We also determined the local distance antimagic chromatic number of join products of some graphs with cycles or paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信