{"title":"有循环或路径的图形连接积的局部距离反魔术色度数","authors":"W. Shiu, G. Lau, Nalliah M","doi":"10.15672/hujms.1266085","DOIUrl":null,"url":null,"abstract":"Let G be a graph of order p without isolated vertices. A bijection f : V → {1, 2, 3, . . . , p} is called a local distance antimagic labeling, if wf (u) ̸= wf (v) for every edge uv of G, where wf(u) =ΣxϵN(u) f(x). The local distance antimagic chromatic number χlda(G) is defined to be the minimum number of colors taken over all colorings of G induced by local distance antimagic labelings of G. In this paper, we determined the local distance antimagic chromatic number of some cycles, paths, disjoint union of 3-paths. We also determined the local distance antimagic chromatic number of join products of some graphs with cycles or paths.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Distance Antimagic Chromatic Number of Join Product of Graphs with Cycles or Paths\",\"authors\":\"W. Shiu, G. Lau, Nalliah M\",\"doi\":\"10.15672/hujms.1266085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a graph of order p without isolated vertices. A bijection f : V → {1, 2, 3, . . . , p} is called a local distance antimagic labeling, if wf (u) ̸= wf (v) for every edge uv of G, where wf(u) =ΣxϵN(u) f(x). The local distance antimagic chromatic number χlda(G) is defined to be the minimum number of colors taken over all colorings of G induced by local distance antimagic labelings of G. In this paper, we determined the local distance antimagic chromatic number of some cycles, paths, disjoint union of 3-paths. We also determined the local distance antimagic chromatic number of join products of some graphs with cycles or paths.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1266085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1266085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 G 是阶数为 p 的无孤立顶点的图。双射 f : V → {1, 2, 3, ., p} 的双射,如果对于 G 的每一条边 uv,wf(u)̸= wf(v),其中 wf(u) =ΣxϵN(u) f(x),则称为局部距离反魔术标记。本文确定了一些循环、路径、3 路径不相交联合的局部距离反魔术色度数。我们还确定了一些图形与循环或路径的连接积的局部距离反魔术色度数。
Local Distance Antimagic Chromatic Number of Join Product of Graphs with Cycles or Paths
Let G be a graph of order p without isolated vertices. A bijection f : V → {1, 2, 3, . . . , p} is called a local distance antimagic labeling, if wf (u) ̸= wf (v) for every edge uv of G, where wf(u) =ΣxϵN(u) f(x). The local distance antimagic chromatic number χlda(G) is defined to be the minimum number of colors taken over all colorings of G induced by local distance antimagic labelings of G. In this paper, we determined the local distance antimagic chromatic number of some cycles, paths, disjoint union of 3-paths. We also determined the local distance antimagic chromatic number of join products of some graphs with cycles or paths.