{"title":"考虑气膜厚度的矩形孔补偿空气轴承的稳定性","authors":"Penghai Zhang","doi":"10.1177/13506501241246029","DOIUrl":null,"url":null,"abstract":"A theoretical model of the orifice-compensated air bearing with rectangular shape is built to study the stability, the stiffness and the air consumption considering the air film thickness. The study shows that, the pocket volume ratio of less than 0.03 is recommended to avoid the pneumatic hammer. The stability is good and the air consumption is small when the bearing has the high stiffness. Strict control of the structural deformation is crucial as it can significantly affect the stability. Increasing the nozzle number can improve the stability and avoid the choked flow. The findings are of great importance for the design of the orifice-compensated air bearing.","PeriodicalId":509096,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"33 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of orifice-compensated air bearing with rectangular shape considering air film thickness\",\"authors\":\"Penghai Zhang\",\"doi\":\"10.1177/13506501241246029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical model of the orifice-compensated air bearing with rectangular shape is built to study the stability, the stiffness and the air consumption considering the air film thickness. The study shows that, the pocket volume ratio of less than 0.03 is recommended to avoid the pneumatic hammer. The stability is good and the air consumption is small when the bearing has the high stiffness. Strict control of the structural deformation is crucial as it can significantly affect the stability. Increasing the nozzle number can improve the stability and avoid the choked flow. The findings are of great importance for the design of the orifice-compensated air bearing.\",\"PeriodicalId\":509096,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"33 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501241246029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501241246029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability of orifice-compensated air bearing with rectangular shape considering air film thickness
A theoretical model of the orifice-compensated air bearing with rectangular shape is built to study the stability, the stiffness and the air consumption considering the air film thickness. The study shows that, the pocket volume ratio of less than 0.03 is recommended to avoid the pneumatic hammer. The stability is good and the air consumption is small when the bearing has the high stiffness. Strict control of the structural deformation is crucial as it can significantly affect the stability. Increasing the nozzle number can improve the stability and avoid the choked flow. The findings are of great importance for the design of the orifice-compensated air bearing.