量子化韦尔代数、双中心化性质以及 Uq (gl n ) 的新第一基本定理

G. Letzter, S. Sahi, Hadi Salmasian
{"title":"量子化韦尔代数、双中心化性质以及 Uq (gl n ) 的新第一基本定理","authors":"G. Letzter, S. Sahi, Hadi Salmasian","doi":"10.1088/1751-8121/ad3ef1","DOIUrl":null,"url":null,"abstract":"\n Let P := Pm×n denote the quantized coordinate ring of the space of m × n matrices. We introduce a q-analog PD of the algebra of polynomial coefficient differential operators inside End(P) and we prove that PD is an integral form of the algebra Pol(Matm×n)q introduced earlier by Shklyarov-Sinel'shchikov-Vaksman [SSV04]. Let L and R denote the images in End(P) of the natural actions of the quantized enveloping algebras Uq(glm) and Uq(gln), respectively, and let Lh and Rh denote the images of their Cartan subalgebras. Our main result is that L ∩ PD and R ∩ PD are mutual centralizers in PD, and using this, we establish a new First Fundamental Theorem of invariant theory for Uq(gln). We also determine explicit generators of the subalgebras Lh ∩ PD and Rh ∩ PD in terms of q-determinants.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantized Weyl algebras, the double centralizer property, and a new first fundamental theorem for Uq\\n (gl\\n n\\n )\",\"authors\":\"G. Letzter, S. Sahi, Hadi Salmasian\",\"doi\":\"10.1088/1751-8121/ad3ef1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Let P := Pm×n denote the quantized coordinate ring of the space of m × n matrices. We introduce a q-analog PD of the algebra of polynomial coefficient differential operators inside End(P) and we prove that PD is an integral form of the algebra Pol(Matm×n)q introduced earlier by Shklyarov-Sinel'shchikov-Vaksman [SSV04]. Let L and R denote the images in End(P) of the natural actions of the quantized enveloping algebras Uq(glm) and Uq(gln), respectively, and let Lh and Rh denote the images of their Cartan subalgebras. Our main result is that L ∩ PD and R ∩ PD are mutual centralizers in PD, and using this, we establish a new First Fundamental Theorem of invariant theory for Uq(gln). We also determine explicit generators of the subalgebras Lh ∩ PD and Rh ∩ PD in terms of q-determinants.\",\"PeriodicalId\":502730,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad3ef1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad3ef1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

让 P := Pm×n 表示 m×n 矩阵空间的量化坐标环。我们引入 End(P) 内多项式共约二阶算子代数的 q-analog PD,并证明 PD 是 Shklyarov-Sinel'shchikov-Vaksman [SSV04] 早先引入的 Pol(Matm×n)q 代数的积分形式。让 L 和 R 分别表示量子化包络代数 Uq(glm) 和 Uq(gln) 的自然作用在 End(P) 中的映像,让 Lh 和 Rh 分别表示它们的 Cartan 子代数的映像。我们的主要结果是 L ∩ PD 和 R ∩ PD 是 PD 中的互中心集,并以此建立了 Uq(gln) 不变理论的新第一基本定理。我们还根据 q 定因子确定了子代数 Lh ∩ PD 和 Rh ∩ PD 的显式生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantized Weyl algebras, the double centralizer property, and a new first fundamental theorem for Uq (gl n )
Let P := Pm×n denote the quantized coordinate ring of the space of m × n matrices. We introduce a q-analog PD of the algebra of polynomial coefficient differential operators inside End(P) and we prove that PD is an integral form of the algebra Pol(Matm×n)q introduced earlier by Shklyarov-Sinel'shchikov-Vaksman [SSV04]. Let L and R denote the images in End(P) of the natural actions of the quantized enveloping algebras Uq(glm) and Uq(gln), respectively, and let Lh and Rh denote the images of their Cartan subalgebras. Our main result is that L ∩ PD and R ∩ PD are mutual centralizers in PD, and using this, we establish a new First Fundamental Theorem of invariant theory for Uq(gln). We also determine explicit generators of the subalgebras Lh ∩ PD and Rh ∩ PD in terms of q-determinants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信