{"title":"持续葡萄糖监测在糖尿病肾病中的应用和管理","authors":"Xin-Miao Zhang, Quan-Quan Shen","doi":"10.4239/wjd.v15.i4.591","DOIUrl":null,"url":null,"abstract":"Diabetic kidney disease (DKD) is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease (ESKD). Wide glycemic var-iations, such as hypoglycemia and hyperglycemia, are broadly found in diabetic patients with DKD and especially ESKD, as a result of impaired renal metabolism. It is essential to monitor glycemia for effective management of DKD. Hemoglobin A1c (HbA1c) has long been considered as the gold standard for monitoring glycemia for > 3 months. However, assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction. Continuous glucose monitoring (CGM) has provided new insights on glycemic assessment and management. CGM directly measures glucose level in interstitial fluid, reports real-time or retrospective glucose concentration, and provides multiple glycemic metrics. It avoids the pitfalls of HbA1c in some contexts, and may serve as a precise alternative to estimation of mean glucose and glycemic variability. Emerging studies have demonstrated the merits of CGM for precise monitoring, which allows fine-tuning of glycemic management in diabetic patients. Therefore, CGM technology has the potential for better glycemic monitoring in DKD patients. More research is needed to explore its application and management in different stages of DKD, including hemodialysis, peritoneal dialysis and kidney transplantation.","PeriodicalId":509005,"journal":{"name":"World Journal of Diabetes","volume":"76 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application and management of continuous glucose monitoring in diabetic kidney disease\",\"authors\":\"Xin-Miao Zhang, Quan-Quan Shen\",\"doi\":\"10.4239/wjd.v15.i4.591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic kidney disease (DKD) is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease (ESKD). Wide glycemic var-iations, such as hypoglycemia and hyperglycemia, are broadly found in diabetic patients with DKD and especially ESKD, as a result of impaired renal metabolism. It is essential to monitor glycemia for effective management of DKD. Hemoglobin A1c (HbA1c) has long been considered as the gold standard for monitoring glycemia for > 3 months. However, assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction. Continuous glucose monitoring (CGM) has provided new insights on glycemic assessment and management. CGM directly measures glucose level in interstitial fluid, reports real-time or retrospective glucose concentration, and provides multiple glycemic metrics. It avoids the pitfalls of HbA1c in some contexts, and may serve as a precise alternative to estimation of mean glucose and glycemic variability. Emerging studies have demonstrated the merits of CGM for precise monitoring, which allows fine-tuning of glycemic management in diabetic patients. Therefore, CGM technology has the potential for better glycemic monitoring in DKD patients. More research is needed to explore its application and management in different stages of DKD, including hemodialysis, peritoneal dialysis and kidney transplantation.\",\"PeriodicalId\":509005,\"journal\":{\"name\":\"World Journal of Diabetes\",\"volume\":\"76 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Diabetes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4239/wjd.v15.i4.591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4239/wjd.v15.i4.591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application and management of continuous glucose monitoring in diabetic kidney disease
Diabetic kidney disease (DKD) is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease (ESKD). Wide glycemic var-iations, such as hypoglycemia and hyperglycemia, are broadly found in diabetic patients with DKD and especially ESKD, as a result of impaired renal metabolism. It is essential to monitor glycemia for effective management of DKD. Hemoglobin A1c (HbA1c) has long been considered as the gold standard for monitoring glycemia for > 3 months. However, assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction. Continuous glucose monitoring (CGM) has provided new insights on glycemic assessment and management. CGM directly measures glucose level in interstitial fluid, reports real-time or retrospective glucose concentration, and provides multiple glycemic metrics. It avoids the pitfalls of HbA1c in some contexts, and may serve as a precise alternative to estimation of mean glucose and glycemic variability. Emerging studies have demonstrated the merits of CGM for precise monitoring, which allows fine-tuning of glycemic management in diabetic patients. Therefore, CGM technology has the potential for better glycemic monitoring in DKD patients. More research is needed to explore its application and management in different stages of DKD, including hemodialysis, peritoneal dialysis and kidney transplantation.