{"title":"利用合成策略实现石墨烯纳米复合材料的现代化--最新进展","authors":"Ayesha Kausar, Ishaq Ahmad","doi":"10.24294/can.v7i1.4946","DOIUrl":null,"url":null,"abstract":"Graphene has been ranked among one of the most remarkable nanostructure of the carbon world. Graphene modification and nanocomposite formation have been used to expand the practical potential of graphene nanostructure. The overview is an effort to highpoint the indispensable synthesis strategies towards the formation of graphene nanocomposites. Consequently, graphene has been combined with useful matrices (thermoplastic, conducting, or others) to attain the desired end material. Common fabrication approaches like in-situ method, solution processing, and melt extrusion have been widely involved to form the graphene nanocomposites. Moreover, advanced sophisticated methods such as three or four dimensional printing, electrospinning, and others have been used to synthesize the graphene nanocomposites. Focus of all synthesis strategies has remained with the standardized graphene dispersion, physical properties, and applications. However, continuous future efforts are required to resolve the challenges in synthesis strategies and optimization of the parameters behind each technique. As the graphene nanocomposite design and properties directly depend upon the fabrication techniques used, there is obvious need for the development of advanced methods having better control over process parameters. Here, main challenging factors may involve the precise parameter control of the advanced techniques used for graphene nanocomposite manufacturing. Hence, there is not only need of current and future research to resolve the field challenges related to material fabrication but also reporting compiled review articles can be useful for interested field researchers towards challenge solving and future developments in graphene manufacturing.","PeriodicalId":331072,"journal":{"name":"Characterization and Application of Nanomaterials","volume":"358 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modernizations of graphene nanocomposites using synthesis strategies—State-of-the-art\",\"authors\":\"Ayesha Kausar, Ishaq Ahmad\",\"doi\":\"10.24294/can.v7i1.4946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene has been ranked among one of the most remarkable nanostructure of the carbon world. Graphene modification and nanocomposite formation have been used to expand the practical potential of graphene nanostructure. The overview is an effort to highpoint the indispensable synthesis strategies towards the formation of graphene nanocomposites. Consequently, graphene has been combined with useful matrices (thermoplastic, conducting, or others) to attain the desired end material. Common fabrication approaches like in-situ method, solution processing, and melt extrusion have been widely involved to form the graphene nanocomposites. Moreover, advanced sophisticated methods such as three or four dimensional printing, electrospinning, and others have been used to synthesize the graphene nanocomposites. Focus of all synthesis strategies has remained with the standardized graphene dispersion, physical properties, and applications. However, continuous future efforts are required to resolve the challenges in synthesis strategies and optimization of the parameters behind each technique. As the graphene nanocomposite design and properties directly depend upon the fabrication techniques used, there is obvious need for the development of advanced methods having better control over process parameters. Here, main challenging factors may involve the precise parameter control of the advanced techniques used for graphene nanocomposite manufacturing. Hence, there is not only need of current and future research to resolve the field challenges related to material fabrication but also reporting compiled review articles can be useful for interested field researchers towards challenge solving and future developments in graphene manufacturing.\",\"PeriodicalId\":331072,\"journal\":{\"name\":\"Characterization and Application of Nanomaterials\",\"volume\":\"358 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Characterization and Application of Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/can.v7i1.4946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Characterization and Application of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/can.v7i1.4946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modernizations of graphene nanocomposites using synthesis strategies—State-of-the-art
Graphene has been ranked among one of the most remarkable nanostructure of the carbon world. Graphene modification and nanocomposite formation have been used to expand the practical potential of graphene nanostructure. The overview is an effort to highpoint the indispensable synthesis strategies towards the formation of graphene nanocomposites. Consequently, graphene has been combined with useful matrices (thermoplastic, conducting, or others) to attain the desired end material. Common fabrication approaches like in-situ method, solution processing, and melt extrusion have been widely involved to form the graphene nanocomposites. Moreover, advanced sophisticated methods such as three or four dimensional printing, electrospinning, and others have been used to synthesize the graphene nanocomposites. Focus of all synthesis strategies has remained with the standardized graphene dispersion, physical properties, and applications. However, continuous future efforts are required to resolve the challenges in synthesis strategies and optimization of the parameters behind each technique. As the graphene nanocomposite design and properties directly depend upon the fabrication techniques used, there is obvious need for the development of advanced methods having better control over process parameters. Here, main challenging factors may involve the precise parameter control of the advanced techniques used for graphene nanocomposite manufacturing. Hence, there is not only need of current and future research to resolve the field challenges related to material fabrication but also reporting compiled review articles can be useful for interested field researchers towards challenge solving and future developments in graphene manufacturing.