电感电抗隔离型高效动态海水单极天线

Lihua Li, Shimin Feng, Menglei Xiu
{"title":"电感电抗隔离型高效动态海水单极天线","authors":"Lihua Li, Shimin Feng, Menglei Xiu","doi":"10.13052/2023.aces.j.381204","DOIUrl":null,"url":null,"abstract":"The dynamic-type seawater monopole antenna has the problem of direct connection between its radiation body and the seawater. This makes the radiation current flow into the seawater, which leads to low radiation efficiency. In this paper, a dynamic-type seawater monopole antenna of high efficiency is proposed using an inductive reactance isolated method. Based on this method, a dynamic seawater antenna of seawater inductance isolation structure is designed. According to its equivalent circuit diagram, the principle and design basis of isolation are analyzed. The FEKO software is then used to simulate the antenna’s radiation efficiency. In addition, the impacts of the radius of the seawater inductance, the number of turns of the seawater coil, the diameter of the seawater coil, and the average turn spacing on the efficiency of the antenna are studied. Moreover, the experimental verification shows that the radiation efficiency of the designed dynamic seawater antenna with inductive reactance isolation structure can be greater than 70%. The value of the received carrier power in the case of inductance isolation is higher by 10 dB compared with the case without isolation.","PeriodicalId":250668,"journal":{"name":"The Applied Computational Electromagnetics Society Journal (ACES)","volume":"346 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inductive Reactance Isolated Dynamic Seawater Monopole Antenna of High Efficiency\",\"authors\":\"Lihua Li, Shimin Feng, Menglei Xiu\",\"doi\":\"10.13052/2023.aces.j.381204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic-type seawater monopole antenna has the problem of direct connection between its radiation body and the seawater. This makes the radiation current flow into the seawater, which leads to low radiation efficiency. In this paper, a dynamic-type seawater monopole antenna of high efficiency is proposed using an inductive reactance isolated method. Based on this method, a dynamic seawater antenna of seawater inductance isolation structure is designed. According to its equivalent circuit diagram, the principle and design basis of isolation are analyzed. The FEKO software is then used to simulate the antenna’s radiation efficiency. In addition, the impacts of the radius of the seawater inductance, the number of turns of the seawater coil, the diameter of the seawater coil, and the average turn spacing on the efficiency of the antenna are studied. Moreover, the experimental verification shows that the radiation efficiency of the designed dynamic seawater antenna with inductive reactance isolation structure can be greater than 70%. The value of the received carrier power in the case of inductance isolation is higher by 10 dB compared with the case without isolation.\",\"PeriodicalId\":250668,\"journal\":{\"name\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"volume\":\"346 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/2023.aces.j.381204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Applied Computational Electromagnetics Society Journal (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.381204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态型海水单极天线存在辐射体与海水直接相连的问题。这使得辐射电流流入海水,从而导致辐射效率低下。本文采用电感电抗隔离法,提出了一种高效率的动态型海水单极子天线。基于这种方法,设计了一种海水电感隔离结构的动态海水天线。根据其等效电路图,分析了隔离的原理和设计基础。然后使用 FEKO 软件模拟了天线的辐射效率。此外,还研究了海水电感半径、海水线圈匝数、海水线圈直径和平均匝间距对天线效率的影响。此外,实验验证表明,所设计的具有电感电抗隔离结构的动态海水天线的辐射效率可大于 70%。电感隔离情况下的接收载波功率值比无隔离情况下高 10 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inductive Reactance Isolated Dynamic Seawater Monopole Antenna of High Efficiency
The dynamic-type seawater monopole antenna has the problem of direct connection between its radiation body and the seawater. This makes the radiation current flow into the seawater, which leads to low radiation efficiency. In this paper, a dynamic-type seawater monopole antenna of high efficiency is proposed using an inductive reactance isolated method. Based on this method, a dynamic seawater antenna of seawater inductance isolation structure is designed. According to its equivalent circuit diagram, the principle and design basis of isolation are analyzed. The FEKO software is then used to simulate the antenna’s radiation efficiency. In addition, the impacts of the radius of the seawater inductance, the number of turns of the seawater coil, the diameter of the seawater coil, and the average turn spacing on the efficiency of the antenna are studied. Moreover, the experimental verification shows that the radiation efficiency of the designed dynamic seawater antenna with inductive reactance isolation structure can be greater than 70%. The value of the received carrier power in the case of inductance isolation is higher by 10 dB compared with the case without isolation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信