{"title":"校准共振卤化腔的低温测量系统","authors":"Dong He, Jie Fan, Xin Gao, Yu Gao, Nick Houston, Z. Ji, Yirong Jin, Chuang Li, Jinmian Li, Tianjun Li, Shi-hang Liu, Jia-Shu Niu, Zhihui Peng, Liang Sun, Zheng Sun, Jia Wang, Puxian Wei, Lina Wu, Zhongchen Xiang, Qiao-Qiao Yang, Chi Zhang, Wenxing Zhang, Xin Zhang, Dongning Zheng, Ruifeng Zheng, Jianhua Zhou","doi":"10.1088/1674-1137/ad4267","DOIUrl":null,"url":null,"abstract":"\n Possible light bosonic dark matter interactions with the Standard Model photon have been searched by microwave resonant cavities. In this paper, we demonstrate the cryogenic readout system calibration of a 7.138 GHz copper cavity with a loaded quality factor $Q_l=10^4$, operated at 22 mK temperature based on a dilution refrigerator. Our readout system consists of High Electron Mobility Transistors as cryogenic amplifiers at 4 K, plus room-temperature amplifiers and a spectrum analyzer for signal power detection. We test the system with a superconducting two-level system as a single-photon source in the microwave frequency regime and report an overall 95.6 dB system gain and -71.4 dB attenuation in the cavity's input channel. The effective noise temperature of the measurement system is 7.5 K. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.","PeriodicalId":504778,"journal":{"name":"Chinese Physics C","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of the Cryogenic Measurement System of a Resonant Haloscope Cavity\",\"authors\":\"Dong He, Jie Fan, Xin Gao, Yu Gao, Nick Houston, Z. Ji, Yirong Jin, Chuang Li, Jinmian Li, Tianjun Li, Shi-hang Liu, Jia-Shu Niu, Zhihui Peng, Liang Sun, Zheng Sun, Jia Wang, Puxian Wei, Lina Wu, Zhongchen Xiang, Qiao-Qiao Yang, Chi Zhang, Wenxing Zhang, Xin Zhang, Dongning Zheng, Ruifeng Zheng, Jianhua Zhou\",\"doi\":\"10.1088/1674-1137/ad4267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Possible light bosonic dark matter interactions with the Standard Model photon have been searched by microwave resonant cavities. In this paper, we demonstrate the cryogenic readout system calibration of a 7.138 GHz copper cavity with a loaded quality factor $Q_l=10^4$, operated at 22 mK temperature based on a dilution refrigerator. Our readout system consists of High Electron Mobility Transistors as cryogenic amplifiers at 4 K, plus room-temperature amplifiers and a spectrum analyzer for signal power detection. We test the system with a superconducting two-level system as a single-photon source in the microwave frequency regime and report an overall 95.6 dB system gain and -71.4 dB attenuation in the cavity's input channel. The effective noise temperature of the measurement system is 7.5 K. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.\",\"PeriodicalId\":504778,\"journal\":{\"name\":\"Chinese Physics C\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1137/ad4267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad4267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calibration of the Cryogenic Measurement System of a Resonant Haloscope Cavity
Possible light bosonic dark matter interactions with the Standard Model photon have been searched by microwave resonant cavities. In this paper, we demonstrate the cryogenic readout system calibration of a 7.138 GHz copper cavity with a loaded quality factor $Q_l=10^4$, operated at 22 mK temperature based on a dilution refrigerator. Our readout system consists of High Electron Mobility Transistors as cryogenic amplifiers at 4 K, plus room-temperature amplifiers and a spectrum analyzer for signal power detection. We test the system with a superconducting two-level system as a single-photon source in the microwave frequency regime and report an overall 95.6 dB system gain and -71.4 dB attenuation in the cavity's input channel. The effective noise temperature of the measurement system is 7.5 K. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.