利用视觉注意力技术进行视频摘要的框架

M. Dhanushree, R. Priya, P. Aruna, R. Bhavani
{"title":"利用视觉注意力技术进行视频摘要的框架","authors":"M. Dhanushree, R. Priya, P. Aruna, R. Bhavani","doi":"10.17485/ijst/v17i15.456","DOIUrl":null,"url":null,"abstract":"Objectives: To develop an efficient Video Summarization technique that aims to utilize the saliency map for mimicking the human way of selecting the important events in the given video. Methods: This paper proposes Histogram based Weighted Fusion (HWF) algorithm that uses spatial and temporal saliency maps to act as guidance in creating the summary of the video. The spatial saliency score and temporal saliency score obtained from the corresponding saliency maps are fused using the proposed HWF algorithm to obtain the frame level importance score. It tries to depict the visual attention of the human brain when watching a particular video. Findings: The experimental results show that the proposed HWF algorithm performs better than the state-of-the-art methods. Novelty: The use of Histogram intersection and the incorporation of the exponential function as the weight for the combined feature enhance the summarization ability of the proposed model. Keywords: Video Summarization, Saliency Map, Histogram intersection, Contrast sensitivity function, Attention curves","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":"33 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Video Summarization using Visual Attention Technique\",\"authors\":\"M. Dhanushree, R. Priya, P. Aruna, R. Bhavani\",\"doi\":\"10.17485/ijst/v17i15.456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: To develop an efficient Video Summarization technique that aims to utilize the saliency map for mimicking the human way of selecting the important events in the given video. Methods: This paper proposes Histogram based Weighted Fusion (HWF) algorithm that uses spatial and temporal saliency maps to act as guidance in creating the summary of the video. The spatial saliency score and temporal saliency score obtained from the corresponding saliency maps are fused using the proposed HWF algorithm to obtain the frame level importance score. It tries to depict the visual attention of the human brain when watching a particular video. Findings: The experimental results show that the proposed HWF algorithm performs better than the state-of-the-art methods. Novelty: The use of Histogram intersection and the incorporation of the exponential function as the weight for the combined feature enhance the summarization ability of the proposed model. Keywords: Video Summarization, Saliency Map, Histogram intersection, Contrast sensitivity function, Attention curves\",\"PeriodicalId\":13296,\"journal\":{\"name\":\"Indian journal of science and technology\",\"volume\":\"33 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17485/ijst/v17i15.456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i15.456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标开发一种高效的视频摘要技术,旨在利用显著性地图来模仿人类在给定视频中选择重要事件的方式。方法本文提出了基于直方图的加权融合(HWF)算法,该算法使用空间和时间显著性图作为创建视频摘要的指导。使用所提出的 HWF 算法融合从相应的显著性图中获得的空间显著性得分和时间显著性得分,从而获得帧级重要性得分。它试图描述人脑在观看特定视频时的视觉注意力。实验结果实验结果表明,所提出的 HWF 算法比最先进的方法表现更好。新颖性: 使用直方图交集和指数函数作为组合特征的权重,增强了所提模型的总结能力。关键词视频摘要 Saliency Map 直方图交集 对比敏感度函数 注意力曲线
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Video Summarization using Visual Attention Technique
Objectives: To develop an efficient Video Summarization technique that aims to utilize the saliency map for mimicking the human way of selecting the important events in the given video. Methods: This paper proposes Histogram based Weighted Fusion (HWF) algorithm that uses spatial and temporal saliency maps to act as guidance in creating the summary of the video. The spatial saliency score and temporal saliency score obtained from the corresponding saliency maps are fused using the proposed HWF algorithm to obtain the frame level importance score. It tries to depict the visual attention of the human brain when watching a particular video. Findings: The experimental results show that the proposed HWF algorithm performs better than the state-of-the-art methods. Novelty: The use of Histogram intersection and the incorporation of the exponential function as the weight for the combined feature enhance the summarization ability of the proposed model. Keywords: Video Summarization, Saliency Map, Histogram intersection, Contrast sensitivity function, Attention curves
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信