确保智能合约的安全:利用高效 NetB2 检测的力量

Janhavi Satam, Sangeeta Vhatkar
{"title":"确保智能合约的安全:利用高效 NetB2 检测的力量","authors":"Janhavi Satam, Sangeeta Vhatkar","doi":"10.17485/ijst/v17i15.617","DOIUrl":null,"url":null,"abstract":"Objective: Using a variety of datasets from the Ethereum documentation and Smart Contract Dataset repository, this study tackles the crucial problem of classifying smart contract vulnerabilities. Methods: Our study uses a three-module method and focuses on the Resource 3 Dataset, which contains over 2,000 Ethereum smart contracts, including inherited contracts. The groundwork for deep learning model training is laid in Module 1 by extracting bytecode from Solidity files and creating images thereafter. In Colab, Module 2 entails importing data, pre-processing, SMOTE balancing, and building three deep learning models: CNN, XCEPTION, and EfficientNet-B2. Module 3 is a Flask-based web application created in Visual Studio Code that enables vulnerability predictions, bytecode extraction, and user interaction. Findings: With an overall accuracy of 71 percent, the Convolutional Neural Network (CNN) displays its effectiveness in classifying vulnerabilities. Although the accuracy of XCEPTION and EfficientNet-B2 is 69% and 75%, respectively, the latter is the top performer. Novelty & Applications: The online application adds to the comprehensive examination of smart contract security by giving users an easy-to-use interface. The EfficientNet-B2 model stands out as a dependable tool for precise vulnerability classification, and this study advances our understanding of and efforts to mitigate vulnerabilities in Ethereum smart contracts. Keywords: Smart Contracts, Vulnerability Classification, Ethereum, Deep Learning, Convolutional Neural Network (CNN)","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Securing Smart Contracts: Harnessing the Power of Efficient NetB2 Detection\",\"authors\":\"Janhavi Satam, Sangeeta Vhatkar\",\"doi\":\"10.17485/ijst/v17i15.617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Using a variety of datasets from the Ethereum documentation and Smart Contract Dataset repository, this study tackles the crucial problem of classifying smart contract vulnerabilities. Methods: Our study uses a three-module method and focuses on the Resource 3 Dataset, which contains over 2,000 Ethereum smart contracts, including inherited contracts. The groundwork for deep learning model training is laid in Module 1 by extracting bytecode from Solidity files and creating images thereafter. In Colab, Module 2 entails importing data, pre-processing, SMOTE balancing, and building three deep learning models: CNN, XCEPTION, and EfficientNet-B2. Module 3 is a Flask-based web application created in Visual Studio Code that enables vulnerability predictions, bytecode extraction, and user interaction. Findings: With an overall accuracy of 71 percent, the Convolutional Neural Network (CNN) displays its effectiveness in classifying vulnerabilities. Although the accuracy of XCEPTION and EfficientNet-B2 is 69% and 75%, respectively, the latter is the top performer. Novelty & Applications: The online application adds to the comprehensive examination of smart contract security by giving users an easy-to-use interface. The EfficientNet-B2 model stands out as a dependable tool for precise vulnerability classification, and this study advances our understanding of and efforts to mitigate vulnerabilities in Ethereum smart contracts. Keywords: Smart Contracts, Vulnerability Classification, Ethereum, Deep Learning, Convolutional Neural Network (CNN)\",\"PeriodicalId\":13296,\"journal\":{\"name\":\"Indian journal of science and technology\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17485/ijst/v17i15.617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i15.617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究利用以太坊文档和智能合约数据集库中的各种数据集,解决了智能合约漏洞分类这一关键问题。研究方法我们的研究采用三模块方法,重点关注资源 3 数据集,其中包含 2000 多个以太坊智能合约,包括继承合约。在模块 1 中,通过从 Solidity 文件中提取字节码并创建图像,为深度学习模型训练奠定了基础。在 Colab 中,模块 2 需要导入数据、预处理、SMOTE 平衡以及构建三个深度学习模型:CNN、XCEPTION 和 EfficientNet-B2。模块 3 是在 Visual Studio Code 中创建的基于 Flask 的网络应用程序,可进行漏洞预测、字节码提取和用户交互。研究结果卷积神经网络(CNN)的总体准确率为 71%,显示了其在漏洞分类方面的有效性。虽然 XCEPTION 和 EfficientNet-B2 的准确率分别为 69% 和 75%,但后者表现最佳。新颖性与应用:在线应用程序为用户提供了一个易于使用的界面,为智能合约安全性的全面检查增添了新的内容。EfficientNet-B2 模型是进行精确漏洞分类的可靠工具,这项研究有助于我们了解以太坊智能合约中的漏洞,并努力减少这些漏洞。关键词智能合约、漏洞分类、以太坊、深度学习、卷积神经网络(CNN)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Securing Smart Contracts: Harnessing the Power of Efficient NetB2 Detection
Objective: Using a variety of datasets from the Ethereum documentation and Smart Contract Dataset repository, this study tackles the crucial problem of classifying smart contract vulnerabilities. Methods: Our study uses a three-module method and focuses on the Resource 3 Dataset, which contains over 2,000 Ethereum smart contracts, including inherited contracts. The groundwork for deep learning model training is laid in Module 1 by extracting bytecode from Solidity files and creating images thereafter. In Colab, Module 2 entails importing data, pre-processing, SMOTE balancing, and building three deep learning models: CNN, XCEPTION, and EfficientNet-B2. Module 3 is a Flask-based web application created in Visual Studio Code that enables vulnerability predictions, bytecode extraction, and user interaction. Findings: With an overall accuracy of 71 percent, the Convolutional Neural Network (CNN) displays its effectiveness in classifying vulnerabilities. Although the accuracy of XCEPTION and EfficientNet-B2 is 69% and 75%, respectively, the latter is the top performer. Novelty & Applications: The online application adds to the comprehensive examination of smart contract security by giving users an easy-to-use interface. The EfficientNet-B2 model stands out as a dependable tool for precise vulnerability classification, and this study advances our understanding of and efforts to mitigate vulnerabilities in Ethereum smart contracts. Keywords: Smart Contracts, Vulnerability Classification, Ethereum, Deep Learning, Convolutional Neural Network (CNN)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信