熊猫X-4T探测超新星爆发产生的中微子

B. Pang, Jiang Liu, Yang Zhang
{"title":"熊猫X-4T探测超新星爆发产生的中微子","authors":"B. Pang, Jiang Liu, Yang Zhang","doi":"10.1088/1674-1137/ad3efe","DOIUrl":null,"url":null,"abstract":"\n Neutrinos from core-collapse supernovae are essential for the understanding of neutrino physics and stellar evolution. The dual-phase xenon dark matter detectors can provide a way to track explosions of galactic supernovae by detecting neutrinos through coherent elastic neutrino-nucleus scatterings. In this study, a variation of progenitor masses as well as explosion models are assumed to predict the neutrino fluxes and spectra, which result in the number of expected neutrino events ranging from 6.6 to 13.7 at a distance of 10 kpc over a 10-second duration with negligible backgrounds at PandaX-4T. Two specialized triggering alarms for monitoring supernova burst neutrinos are built. The efficiency of detecting supernova explosions at various distances in the Milky Way is estimated. These alarms will be implemented in the real-time supernova monitoring system at PandaX-4T in the near future, providing the astronomical communities with supernova early warnings. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.","PeriodicalId":504778,"journal":{"name":"Chinese Physics C","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Neutrinos from Supernova Bursts in PandaX-4T\",\"authors\":\"B. Pang, Jiang Liu, Yang Zhang\",\"doi\":\"10.1088/1674-1137/ad3efe\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Neutrinos from core-collapse supernovae are essential for the understanding of neutrino physics and stellar evolution. The dual-phase xenon dark matter detectors can provide a way to track explosions of galactic supernovae by detecting neutrinos through coherent elastic neutrino-nucleus scatterings. In this study, a variation of progenitor masses as well as explosion models are assumed to predict the neutrino fluxes and spectra, which result in the number of expected neutrino events ranging from 6.6 to 13.7 at a distance of 10 kpc over a 10-second duration with negligible backgrounds at PandaX-4T. Two specialized triggering alarms for monitoring supernova burst neutrinos are built. The efficiency of detecting supernova explosions at various distances in the Milky Way is estimated. These alarms will be implemented in the real-time supernova monitoring system at PandaX-4T in the near future, providing the astronomical communities with supernova early warnings. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.\",\"PeriodicalId\":504778,\"journal\":{\"name\":\"Chinese Physics C\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1137/ad3efe\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad3efe","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

来自核心坍缩超新星的中微子对于了解中微子物理和恒星演化至关重要。双相氙暗物质探测器可以通过相干弹性中微子-核散射探测中微子,从而提供一种跟踪星系超新星爆炸的方法。在这项研究中,假定了不同的原生体质量和爆炸模型来预测中微子通量和光谱,结果在熊猫X-4T上,10千微微距离处10秒持续时间内的预期中微子事件数量从6.6到13.7不等,背景可以忽略不计。为监测超新星爆发中微子建立了两个专门的触发警报器。估算了在银河系不同距离探测超新星爆发的效率。这些警报将在不久的将来应用于熊猫X-4T的超新星实时监测系统,为天文学界提供超新星预警。本文内容可根据知识共享署名 3.0 许可条款使用。对本作品的任何进一步传播都必须注明作者、作品名称、期刊引文和 DOI。文章由 SCOAP3 资助,由中国物理学会、中国科学院高能物理研究所、中国科学院近代物理研究所和 IOP Publishing Ltd. 授权出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Neutrinos from Supernova Bursts in PandaX-4T
Neutrinos from core-collapse supernovae are essential for the understanding of neutrino physics and stellar evolution. The dual-phase xenon dark matter detectors can provide a way to track explosions of galactic supernovae by detecting neutrinos through coherent elastic neutrino-nucleus scatterings. In this study, a variation of progenitor masses as well as explosion models are assumed to predict the neutrino fluxes and spectra, which result in the number of expected neutrino events ranging from 6.6 to 13.7 at a distance of 10 kpc over a 10-second duration with negligible backgrounds at PandaX-4T. Two specialized triggering alarms for monitoring supernova burst neutrinos are built. The efficiency of detecting supernova explosions at various distances in the Milky Way is estimated. These alarms will be implemented in the real-time supernova monitoring system at PandaX-4T in the near future, providing the astronomical communities with supernova early warnings. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信