利用深度学习技术主动分析和检测网络攻击

A. Abirami, S. Lakshmanaprakash, R. L. Priya, Vaishali Hirlekar, Bhargavi Dalal
{"title":"利用深度学习技术主动分析和检测网络攻击","authors":"A. Abirami, S. Lakshmanaprakash, R. L. Priya, Vaishali Hirlekar, Bhargavi Dalal","doi":"10.17485/ijst/v17i15.3044","DOIUrl":null,"url":null,"abstract":"Objectives: This study objective is to create a proactive forensic framework with a classification model to identify the malicious content to avoid cyber-attacks. Methods: In this proposed work, a novel framework is introduced to analyze and detect network attacks before it happens. It monitors the network packet flow, captures the packets, analyzes the packet flow proactively, and detects cyber-attacks using different machine learning algorithms and Deep Convolution Neural network (CNN) technique. The KDD dataset is used in this experiment with 30% for testing and 80% for training. Findings: The simulation results show that the detection percentage of the proposed framework reaches a maximum of 95.92% in different scenarios. It is approximately 10% higher than the existing proactive frameworks for example Gawand’s model, Ahmetoglu’s model and many more. Novelty and applications: The proposed framework is a proactive model which detects the cyber-attack in prior to avoid cyber-attacks. The deep CNN model highly efficient for detecting cyber-attack. Keywords: Proactive Forensic Framework, Deep CNN, Classification Algorithms, Cyber attack detection, Intrusion Detection System","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":"57 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proactive Analysis and Detection of Cyber-attacks using Deep Learning Techniques\",\"authors\":\"A. Abirami, S. Lakshmanaprakash, R. L. Priya, Vaishali Hirlekar, Bhargavi Dalal\",\"doi\":\"10.17485/ijst/v17i15.3044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: This study objective is to create a proactive forensic framework with a classification model to identify the malicious content to avoid cyber-attacks. Methods: In this proposed work, a novel framework is introduced to analyze and detect network attacks before it happens. It monitors the network packet flow, captures the packets, analyzes the packet flow proactively, and detects cyber-attacks using different machine learning algorithms and Deep Convolution Neural network (CNN) technique. The KDD dataset is used in this experiment with 30% for testing and 80% for training. Findings: The simulation results show that the detection percentage of the proposed framework reaches a maximum of 95.92% in different scenarios. It is approximately 10% higher than the existing proactive frameworks for example Gawand’s model, Ahmetoglu’s model and many more. Novelty and applications: The proposed framework is a proactive model which detects the cyber-attack in prior to avoid cyber-attacks. The deep CNN model highly efficient for detecting cyber-attack. Keywords: Proactive Forensic Framework, Deep CNN, Classification Algorithms, Cyber attack detection, Intrusion Detection System\",\"PeriodicalId\":13296,\"journal\":{\"name\":\"Indian journal of science and technology\",\"volume\":\"57 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17485/ijst/v17i15.3044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i15.3044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究目标本研究的目的是创建一个具有分类模型的主动取证框架,以识别恶意内容,避免网络攻击。方法:本研究提出了一个新颖的框架,用于在网络攻击发生之前对其进行分析和检测。它使用不同的机器学习算法和深度卷积神经网络(CNN)技术监控网络数据包流、捕获数据包、主动分析数据包流并检测网络攻击。本实验使用了 KDD 数据集,其中 30% 用于测试,80% 用于训练。实验结果模拟结果表明,在不同场景下,拟议框架的检测率最高可达 95.92%。这比现有的主动式框架(如 Gawand 模型、Ahmetoglu 模型等)高出约 10%。新颖性和应用:所提出的框架是一种主动模型,它能在网络攻击发生前检测到网络攻击,从而避免网络攻击。深度 CNN 模型可高效检测网络攻击。关键词主动取证框架、深度 CNN、分类算法、网络攻击检测、入侵检测系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proactive Analysis and Detection of Cyber-attacks using Deep Learning Techniques
Objectives: This study objective is to create a proactive forensic framework with a classification model to identify the malicious content to avoid cyber-attacks. Methods: In this proposed work, a novel framework is introduced to analyze and detect network attacks before it happens. It monitors the network packet flow, captures the packets, analyzes the packet flow proactively, and detects cyber-attacks using different machine learning algorithms and Deep Convolution Neural network (CNN) technique. The KDD dataset is used in this experiment with 30% for testing and 80% for training. Findings: The simulation results show that the detection percentage of the proposed framework reaches a maximum of 95.92% in different scenarios. It is approximately 10% higher than the existing proactive frameworks for example Gawand’s model, Ahmetoglu’s model and many more. Novelty and applications: The proposed framework is a proactive model which detects the cyber-attack in prior to avoid cyber-attacks. The deep CNN model highly efficient for detecting cyber-attack. Keywords: Proactive Forensic Framework, Deep CNN, Classification Algorithms, Cyber attack detection, Intrusion Detection System
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信