CMIP6 模型对南美洲降水和近地面温度模拟的评估

M. Reboita, Glauber Willian de Souza Ferreira, João Gabriel Martins Ribeiro, Shaukat Ali
{"title":"CMIP6 模型对南美洲降水和近地面温度模拟的评估","authors":"M. Reboita, Glauber Willian de Souza Ferreira, João Gabriel Martins Ribeiro, Shaukat Ali","doi":"10.1088/2752-5295/ad3fdb","DOIUrl":null,"url":null,"abstract":"\n This study evaluated the performance of 50 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in simulating the statistical features of precipitation and air temperature in five subdomains of South America during the historical period (1995-2014). Monthly precipitation and temperature simulations were validated with data from the Climate Prediction Center Merged Analysis of Precipitation (CMAP), the Global Precipitation Climatology Project (GPCP), and the ERA5 reanalysis. The models’ performance was evaluated using a ranking analysis with statistical metrics such as mean, standard deviation, Pearson’s spatial correlation, annual cycle amplitude, and linear trend. The analyses considered the representation of precipitation and air temperature separately for each subdomain, the representation for all five regions together, and the joint representation of precipitation and air temperature for all five subdomains. In the Brazilian Amazon, the best-performing models were EC-Earth3-Veg, INM-CM4-8, and INMCM5-0 (precipitation), and IPSL-CM6A-LR, MPI-ESM2-0, and IITM-ESM (temperature). In the La Plata Basin, KACE-1-0-G, ACCESS-CM2, and IPSL-CM6A-LR (precipitation), and GFDL-ESM4, TaiESM1, and EC-Earth3-Veg (temperature) yielded the best simulations. In Northeast Brazil, SAM0-UNICON, CESM2, and MCM-UA-1-0 (precipitation), BCC-CSM2-MR, KACE-1-0-G, and CESM2 (temperature) showed the best results. In Argentine Patagonia, the GCMs ACCESS-CM2, ACCESS-ESM1-5 and EC-Earth3-Veg-LR (precipitation), and CAMS-CSM1-0, CMCC-CM2-HR4, and GFDL-ESM4 (temperature) outperformed. Finally, for Southeast Brazil, the models ACCESS-CM2, ACCESS-ESM1-5, and EC-Earth3-Veg-LR (precipitation), and CAMS-CSM1-0, CMCC-CM2-HR4, and GFDL-ESM4 (temperature) yielded the best simulations. The joint evaluation of the regions and variables indicated that the best models are CESM2, TaiESM1, CMCC-CM2-HR4, FIO-ESM-2-0, and MRI-ESM2-0.","PeriodicalId":432508,"journal":{"name":"Environmental Research: Climate","volume":" 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of precipitation and near-surface temperature simulation by CMIP6 models in South America\",\"authors\":\"M. Reboita, Glauber Willian de Souza Ferreira, João Gabriel Martins Ribeiro, Shaukat Ali\",\"doi\":\"10.1088/2752-5295/ad3fdb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study evaluated the performance of 50 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in simulating the statistical features of precipitation and air temperature in five subdomains of South America during the historical period (1995-2014). Monthly precipitation and temperature simulations were validated with data from the Climate Prediction Center Merged Analysis of Precipitation (CMAP), the Global Precipitation Climatology Project (GPCP), and the ERA5 reanalysis. The models’ performance was evaluated using a ranking analysis with statistical metrics such as mean, standard deviation, Pearson’s spatial correlation, annual cycle amplitude, and linear trend. The analyses considered the representation of precipitation and air temperature separately for each subdomain, the representation for all five regions together, and the joint representation of precipitation and air temperature for all five subdomains. In the Brazilian Amazon, the best-performing models were EC-Earth3-Veg, INM-CM4-8, and INMCM5-0 (precipitation), and IPSL-CM6A-LR, MPI-ESM2-0, and IITM-ESM (temperature). In the La Plata Basin, KACE-1-0-G, ACCESS-CM2, and IPSL-CM6A-LR (precipitation), and GFDL-ESM4, TaiESM1, and EC-Earth3-Veg (temperature) yielded the best simulations. In Northeast Brazil, SAM0-UNICON, CESM2, and MCM-UA-1-0 (precipitation), BCC-CSM2-MR, KACE-1-0-G, and CESM2 (temperature) showed the best results. In Argentine Patagonia, the GCMs ACCESS-CM2, ACCESS-ESM1-5 and EC-Earth3-Veg-LR (precipitation), and CAMS-CSM1-0, CMCC-CM2-HR4, and GFDL-ESM4 (temperature) outperformed. Finally, for Southeast Brazil, the models ACCESS-CM2, ACCESS-ESM1-5, and EC-Earth3-Veg-LR (precipitation), and CAMS-CSM1-0, CMCC-CM2-HR4, and GFDL-ESM4 (temperature) yielded the best simulations. The joint evaluation of the regions and variables indicated that the best models are CESM2, TaiESM1, CMCC-CM2-HR4, FIO-ESM-2-0, and MRI-ESM2-0.\",\"PeriodicalId\":432508,\"journal\":{\"name\":\"Environmental Research: Climate\",\"volume\":\" 37\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research: Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5295/ad3fdb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research: Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5295/ad3fdb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了耦合模式相互比较项目第六阶段(CMIP6)的 50 个全球气候模式(GCM)在模拟历史时期(1995-2014 年)南美洲五个子域的降水和气温统计特征方面的性能。利用气候预测中心降水合并分析(CMAP)、全球降水气候学项目(GPCP)和ERA5 再分析的数据对月降水和气温模拟进行了验证。利用平均值、标准偏差、皮尔逊空间相关性、年周期振幅和线性趋势等统计指标进行排序分析,对模式的性能进行评估。分析考虑了每个子域降水和气温的单独表示、所有五个区域的共同表示以及所有五个子域降水和气温的联合表示。在巴西亚马逊地区,表现最好的模式是 EC-Earth3-Veg、INM-CM4-8 和 INMCM5-0(降水),以及 IPSL-CM6A-LR、MPI-ESM2-0 和 IITM-ESM(气温)。在拉普拉塔盆地,KACE-1-0-G、ACCESS-CM2 和 IPSL-CM6A-LR(降水)以及 GFDL-ESM4、TaiESM1 和 EC-Earth3-Veg(温度)的模拟结果最佳。在巴西东北部,SAM0-UNICON、CESM2 和 MCM-UA-1-0(降水)、BCC-CSM2-MR、KACE-1-0-G 和 CESM2(温度)的模拟结果最好。在阿根廷巴塔哥尼亚,GCMs ACCESS-CM2、ACCESS-ESM1-5 和 EC-Earth3-Veg-LR(降水),以及 CAMS-CSM1-0、CMCC-CM2-HR4 和 GFDL-ESM4(温度)表现出色。最后,对于巴西东南部,ACCESS-CM2、ACCESS-ESM1-5 和 EC-Earth3-Veg-LR(降水)以及 CAMS-CSM1-0、CMCC-CM2-HR4 和 GFDL-ESM4(温度)模式的模拟结果最好。对区域和变量的联合评估表明,最佳模式是 CESM2、TaiESM1、CMCC-CM2-HR4、FIO-ESM-2-0 和 MRI-ESM2-0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of precipitation and near-surface temperature simulation by CMIP6 models in South America
This study evaluated the performance of 50 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in simulating the statistical features of precipitation and air temperature in five subdomains of South America during the historical period (1995-2014). Monthly precipitation and temperature simulations were validated with data from the Climate Prediction Center Merged Analysis of Precipitation (CMAP), the Global Precipitation Climatology Project (GPCP), and the ERA5 reanalysis. The models’ performance was evaluated using a ranking analysis with statistical metrics such as mean, standard deviation, Pearson’s spatial correlation, annual cycle amplitude, and linear trend. The analyses considered the representation of precipitation and air temperature separately for each subdomain, the representation for all five regions together, and the joint representation of precipitation and air temperature for all five subdomains. In the Brazilian Amazon, the best-performing models were EC-Earth3-Veg, INM-CM4-8, and INMCM5-0 (precipitation), and IPSL-CM6A-LR, MPI-ESM2-0, and IITM-ESM (temperature). In the La Plata Basin, KACE-1-0-G, ACCESS-CM2, and IPSL-CM6A-LR (precipitation), and GFDL-ESM4, TaiESM1, and EC-Earth3-Veg (temperature) yielded the best simulations. In Northeast Brazil, SAM0-UNICON, CESM2, and MCM-UA-1-0 (precipitation), BCC-CSM2-MR, KACE-1-0-G, and CESM2 (temperature) showed the best results. In Argentine Patagonia, the GCMs ACCESS-CM2, ACCESS-ESM1-5 and EC-Earth3-Veg-LR (precipitation), and CAMS-CSM1-0, CMCC-CM2-HR4, and GFDL-ESM4 (temperature) outperformed. Finally, for Southeast Brazil, the models ACCESS-CM2, ACCESS-ESM1-5, and EC-Earth3-Veg-LR (precipitation), and CAMS-CSM1-0, CMCC-CM2-HR4, and GFDL-ESM4 (temperature) yielded the best simulations. The joint evaluation of the regions and variables indicated that the best models are CESM2, TaiESM1, CMCC-CM2-HR4, FIO-ESM-2-0, and MRI-ESM2-0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信