{"title":"平面上的最小特雷西尼线性及其泛化","authors":"E. Ballico","doi":"10.3390/appliedmath4020028","DOIUrl":null,"url":null,"abstract":"We study properties of the minimal Terracini loci, i.e., families of certain zero-dimensional schemes, in a projective plane. Among the new results here are: a maximality theorem and the existence of arbitrarily large gaps or non-gaps for the integers x for which the minimal Terracini locus in degree d is non-empty. We study similar theorems for the critical schemes of the minimal Terracini sets. This part is framed in a more general framework.","PeriodicalId":503400,"journal":{"name":"AppliedMath","volume":" 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal Terracini Loci in a Plane and Their Generalizations\",\"authors\":\"E. Ballico\",\"doi\":\"10.3390/appliedmath4020028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study properties of the minimal Terracini loci, i.e., families of certain zero-dimensional schemes, in a projective plane. Among the new results here are: a maximality theorem and the existence of arbitrarily large gaps or non-gaps for the integers x for which the minimal Terracini locus in degree d is non-empty. We study similar theorems for the critical schemes of the minimal Terracini sets. This part is framed in a more general framework.\",\"PeriodicalId\":503400,\"journal\":{\"name\":\"AppliedMath\",\"volume\":\" 40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AppliedMath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/appliedmath4020028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AppliedMath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/appliedmath4020028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的是投影平面中的最小特拉奇尼位置(即某些零维方案的族)的性质。这里的新成果包括:最大化定理和存在任意大的间隙或非间隙的整数 x,对于这些整数 x,度数为 d 的最小特雷西尼位置是非空的。我们还研究了极小特雷西尼集合临界方案的类似定理。这部分内容是在一个更一般的框架下进行的。
Minimal Terracini Loci in a Plane and Their Generalizations
We study properties of the minimal Terracini loci, i.e., families of certain zero-dimensional schemes, in a projective plane. Among the new results here are: a maximality theorem and the existence of arbitrarily large gaps or non-gaps for the integers x for which the minimal Terracini locus in degree d is non-empty. We study similar theorems for the critical schemes of the minimal Terracini sets. This part is framed in a more general framework.