用于确定空气污染源特征的多变量分析:第 1 部分 先期数据筛选和基本假设

Mohammed O. A. Mohammed
{"title":"用于确定空气污染源特征的多变量分析:第 1 部分 先期数据筛选和基本假设","authors":"Mohammed O. A. Mohammed","doi":"10.15244/pjoes/179919","DOIUrl":null,"url":null,"abstract":"There is a real need for comparability and consistency of findings obtained from different multivariate methods, based on different assumptions and sensitivity to data errors. This study aims to investigate essential aspects of data screening prior to analysis, particularly the detection of outliers, communalities, multicollinearity, and Kaiser-Meyer-Olkin (KMO) and Bartlett’s tests, and to examine the influence of changing test parameters such as the number of convergence, number of bootstrap runs, FPEAK value, and minimum value of coefficient of determination (R 2 ) on model results. Positive matrix factorization (PMF) and Unmix were applied to monitoring data collected from a receptor site. Findings of communalities estimate and multicollinearity indicated possible data errors in Ca, Cu, Na, and Mn, which affected the stability of source profiles. PMF detected biomass burning, coal combustion","PeriodicalId":510399,"journal":{"name":"Polish Journal of Environmental Studies","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate Analysis for Characterization of\\nAir Pollution Sources: Part 1 Prior Data Screening\\nand Underlying Assumptions\",\"authors\":\"Mohammed O. A. Mohammed\",\"doi\":\"10.15244/pjoes/179919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a real need for comparability and consistency of findings obtained from different multivariate methods, based on different assumptions and sensitivity to data errors. This study aims to investigate essential aspects of data screening prior to analysis, particularly the detection of outliers, communalities, multicollinearity, and Kaiser-Meyer-Olkin (KMO) and Bartlett’s tests, and to examine the influence of changing test parameters such as the number of convergence, number of bootstrap runs, FPEAK value, and minimum value of coefficient of determination (R 2 ) on model results. Positive matrix factorization (PMF) and Unmix were applied to monitoring data collected from a receptor site. Findings of communalities estimate and multicollinearity indicated possible data errors in Ca, Cu, Na, and Mn, which affected the stability of source profiles. PMF detected biomass burning, coal combustion\",\"PeriodicalId\":510399,\"journal\":{\"name\":\"Polish Journal of Environmental Studies\",\"volume\":\" 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Environmental Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15244/pjoes/179919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Environmental Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15244/pjoes/179919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不同的多变量方法基于不同的假设和对数据误差的敏感性,因此确实有必要使这些方法得出的结果具有可比性和一致性。本研究旨在调查分析前数据筛选的基本方面,特别是离群值、共性、多重共线性的检测,以及 Kaiser-Meyer-Olkin (KMO) 和 Bartlett 检验,并研究改变检验参数(如收敛次数、引导运行次数、FPEAK 值和判定系数 (R 2) 的最小值)对模型结果的影响。正矩阵因式分解(PMF)和 Unmix 被应用于从受体地点收集的监测数据。共性估计和多重共线性的结果表明,Ca、Cu、Na 和 Mn 的数据可能存在误差,这影响了源剖面的稳定性。PMF 检测到了生物质燃烧、煤炭燃烧
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate Analysis for Characterization of Air Pollution Sources: Part 1 Prior Data Screening and Underlying Assumptions
There is a real need for comparability and consistency of findings obtained from different multivariate methods, based on different assumptions and sensitivity to data errors. This study aims to investigate essential aspects of data screening prior to analysis, particularly the detection of outliers, communalities, multicollinearity, and Kaiser-Meyer-Olkin (KMO) and Bartlett’s tests, and to examine the influence of changing test parameters such as the number of convergence, number of bootstrap runs, FPEAK value, and minimum value of coefficient of determination (R 2 ) on model results. Positive matrix factorization (PMF) and Unmix were applied to monitoring data collected from a receptor site. Findings of communalities estimate and multicollinearity indicated possible data errors in Ca, Cu, Na, and Mn, which affected the stability of source profiles. PMF detected biomass burning, coal combustion
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信