基于态势感知的模糊 SVM 与 Mahalanobis Distance,用于识别公共卫生突发事件

Q3 Computer Science
Dan Li, Zheng Qu, Chen Lyu, Luping Zhang, Wenjin Zuo
{"title":"基于态势感知的模糊 SVM 与 Mahalanobis Distance,用于识别公共卫生突发事件","authors":"Dan Li, Zheng Qu, Chen Lyu, Luping Zhang, Wenjin Zuo","doi":"10.4018/ijfsa.342117","DOIUrl":null,"url":null,"abstract":"In public health emergencies, situational awareness is crucial for swift responses by governments and rescue organizations. In this manuscript, a novel framework is proposed to identify and classify event-specific information, aiming to comprehend concepts, characteristics, and classifications associated with situational awareness in social media emergencies. First, a statistical approach is employed to extract a set of standard features. Second, a category-based latent dirichlet allocation to vector (LDA2vec) model is leveraged to extract topic-based features to enhance accuracy, particularly for unbalanced datasets. Finally, a fuzzy support vector machine (FSVM) classifier utilizing the Mahalanobis distance kernel is introduced to improve the detection accuracy of event-specific information. The framework's effectiveness is evaluated using the social media public health dataset, achieving superior filtering capabilities for non-informative data with a precision of 89% and an F1-Score of 91%, surpassing other standard methods.","PeriodicalId":38154,"journal":{"name":"International Journal of Fuzzy System Applications","volume":" 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy SVM With Mahalanobis Distance for Situational Awareness-Based Recognition of Public Health Emergencies\",\"authors\":\"Dan Li, Zheng Qu, Chen Lyu, Luping Zhang, Wenjin Zuo\",\"doi\":\"10.4018/ijfsa.342117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In public health emergencies, situational awareness is crucial for swift responses by governments and rescue organizations. In this manuscript, a novel framework is proposed to identify and classify event-specific information, aiming to comprehend concepts, characteristics, and classifications associated with situational awareness in social media emergencies. First, a statistical approach is employed to extract a set of standard features. Second, a category-based latent dirichlet allocation to vector (LDA2vec) model is leveraged to extract topic-based features to enhance accuracy, particularly for unbalanced datasets. Finally, a fuzzy support vector machine (FSVM) classifier utilizing the Mahalanobis distance kernel is introduced to improve the detection accuracy of event-specific information. The framework's effectiveness is evaluated using the social media public health dataset, achieving superior filtering capabilities for non-informative data with a precision of 89% and an F1-Score of 91%, surpassing other standard methods.\",\"PeriodicalId\":38154,\"journal\":{\"name\":\"International Journal of Fuzzy System Applications\",\"volume\":\" 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fuzzy System Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.342117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy System Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.342117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

在公共卫生突发事件中,态势感知对于政府和救援组织的快速反应至关重要。本稿件提出了一个新颖的框架来识别和分类特定事件信息,旨在理解与社交媒体突发事件中的态势感知相关的概念、特征和分类。首先,采用统计方法提取一组标准特征。其次,利用基于类别的潜在德里赫利分配向量(LDA2vec)模型来提取基于主题的特征,以提高准确性,尤其是对于不平衡的数据集。最后,利用 Mahalanobis 距离核引入了模糊支持向量机(FSVM)分类器,以提高特定事件信息的检测准确性。利用社交媒体公共卫生数据集对该框架的有效性进行了评估,结果显示,该框架对非信息数据的过滤能力非常出色,精确度达到 89%,F1-Score 达到 91%,超过了其他标准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy SVM With Mahalanobis Distance for Situational Awareness-Based Recognition of Public Health Emergencies
In public health emergencies, situational awareness is crucial for swift responses by governments and rescue organizations. In this manuscript, a novel framework is proposed to identify and classify event-specific information, aiming to comprehend concepts, characteristics, and classifications associated with situational awareness in social media emergencies. First, a statistical approach is employed to extract a set of standard features. Second, a category-based latent dirichlet allocation to vector (LDA2vec) model is leveraged to extract topic-based features to enhance accuracy, particularly for unbalanced datasets. Finally, a fuzzy support vector machine (FSVM) classifier utilizing the Mahalanobis distance kernel is introduced to improve the detection accuracy of event-specific information. The framework's effectiveness is evaluated using the social media public health dataset, achieving superior filtering capabilities for non-informative data with a precision of 89% and an F1-Score of 91%, surpassing other standard methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fuzzy System Applications
International Journal of Fuzzy System Applications Computer Science-Computer Science (all)
CiteScore
2.40
自引率
0.00%
发文量
65
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信