Vigneshkumar A, C. F. Christy, M. Muthukannan, U. J. Alengaram, M. Maheswaran, Nittin Johnson Jeyaraj
{"title":"二氧化硅纳米颗粒对自密实土工聚合物混凝土流变和力学行为的影响研究","authors":"Vigneshkumar A, C. F. Christy, M. Muthukannan, U. J. Alengaram, M. Maheswaran, Nittin Johnson Jeyaraj","doi":"10.1556/1848.2024.00794","DOIUrl":null,"url":null,"abstract":"Geopolymer concrete (GPC) is a rising eco-conscious substitute for traditional cement-based concrete, bringing the construction industry closer to sustainability. Self-compacting geopolymer concrete (SCGC) enhances the concrete flowability and fills the congested reinforced areas without vibrators in concrete structures such as bridges, tunnels and canals. This study aims to analyze the impact of silicon dioxide nanoparticles (NS) on the rheological and mechanical properties of SCGC to optimize the dosage of NS in SCGC. For this purpose, NS (0–6%) blended in partially distributed binders of fly ash and ground granulated blast furnace slag (50:50) with 0.5 alkaline binder ratio, 2% superplasticizers (9 kg m−3) (MasterGlenium SKY 8233) and 12% extra water (54 kg m−3). Sodium silicate solution and sodium hydroxide ratio of 2.5 was used for this study. It is observed that SCGC with 3% NS replacement complied with the guidelines of EFNARC. According to the T50cm slump flow test, V-funnel test, and L-box test results meet the guidelines of up to 4% NS replacement, and 3% NS addition offers excellent mechanical properties in SCGC. This study concluded that the replacement of 3% of NS improved the fresh and hardened properties of SCGC, which can apply to construction.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of silicon dioxide nanoparticles on the rheological and mechanical behaviors of self-compacting geopolymer concrete\",\"authors\":\"Vigneshkumar A, C. F. Christy, M. Muthukannan, U. J. Alengaram, M. Maheswaran, Nittin Johnson Jeyaraj\",\"doi\":\"10.1556/1848.2024.00794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geopolymer concrete (GPC) is a rising eco-conscious substitute for traditional cement-based concrete, bringing the construction industry closer to sustainability. Self-compacting geopolymer concrete (SCGC) enhances the concrete flowability and fills the congested reinforced areas without vibrators in concrete structures such as bridges, tunnels and canals. This study aims to analyze the impact of silicon dioxide nanoparticles (NS) on the rheological and mechanical properties of SCGC to optimize the dosage of NS in SCGC. For this purpose, NS (0–6%) blended in partially distributed binders of fly ash and ground granulated blast furnace slag (50:50) with 0.5 alkaline binder ratio, 2% superplasticizers (9 kg m−3) (MasterGlenium SKY 8233) and 12% extra water (54 kg m−3). Sodium silicate solution and sodium hydroxide ratio of 2.5 was used for this study. It is observed that SCGC with 3% NS replacement complied with the guidelines of EFNARC. According to the T50cm slump flow test, V-funnel test, and L-box test results meet the guidelines of up to 4% NS replacement, and 3% NS addition offers excellent mechanical properties in SCGC. This study concluded that the replacement of 3% of NS improved the fresh and hardened properties of SCGC, which can apply to construction.\",\"PeriodicalId\":37508,\"journal\":{\"name\":\"International Review of Applied Sciences and Engineering\",\"volume\":\" 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1848.2024.00794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2024.00794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Study of silicon dioxide nanoparticles on the rheological and mechanical behaviors of self-compacting geopolymer concrete
Geopolymer concrete (GPC) is a rising eco-conscious substitute for traditional cement-based concrete, bringing the construction industry closer to sustainability. Self-compacting geopolymer concrete (SCGC) enhances the concrete flowability and fills the congested reinforced areas without vibrators in concrete structures such as bridges, tunnels and canals. This study aims to analyze the impact of silicon dioxide nanoparticles (NS) on the rheological and mechanical properties of SCGC to optimize the dosage of NS in SCGC. For this purpose, NS (0–6%) blended in partially distributed binders of fly ash and ground granulated blast furnace slag (50:50) with 0.5 alkaline binder ratio, 2% superplasticizers (9 kg m−3) (MasterGlenium SKY 8233) and 12% extra water (54 kg m−3). Sodium silicate solution and sodium hydroxide ratio of 2.5 was used for this study. It is observed that SCGC with 3% NS replacement complied with the guidelines of EFNARC. According to the T50cm slump flow test, V-funnel test, and L-box test results meet the guidelines of up to 4% NS replacement, and 3% NS addition offers excellent mechanical properties in SCGC. This study concluded that the replacement of 3% of NS improved the fresh and hardened properties of SCGC, which can apply to construction.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.