优化钛合金-Ti-6Al-4V,使增材制造中的质量最小、刚度最大、频率最高

Dame Alemayehu Efa, E. M. Gutema, H. Lemu, Mahesh Gopal
{"title":"优化钛合金-Ti-6Al-4V,使增材制造中的质量最小、刚度最大、频率最高","authors":"Dame Alemayehu Efa, E. M. Gutema, H. Lemu, Mahesh Gopal","doi":"10.4028/p-so6m4z","DOIUrl":null,"url":null,"abstract":"Manufacture of intricate components, products without the need for tooling, shorter lead times and material grading are the most beneficial applications of Additive Manufacturing (AM). The goal of this study is to develop a design optimization framework for developing an aircraft component using additive manufacturing utilizing topology and lattice optimization techniques. Solid works were used to create a 3D model of an aircraft bracket made of Titanium alloy. To minimize mass and maximize frequency and stiffness, the optimization was performed using Altair Inspire 2022.1 software. Component optimization was performed using the finite element method, which entails reducing material while maintaining the proper function of the modelled component. The optimal performance of the designed aerospace component using topology with lattice infill is achieved with minimization of mass from 2.24810 kg to 0.16235 kg and the volume from 5.07579x105 mm3 to 4.70922x102 mm3, frequency is increased from 0.02 kHz to 13.9537 kHz, stiffness is maximized from 1,485,884.1 N/m to 4,558,924.0939 N/m with a factor of safety of 1.73. Therefore, the mechanical properties of the optimized model can full fill its overall performance.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Titanium Alloy-Ti-6Al-4V to Minimize Mass, Maximize Stiffness and Frequency in Additive Manufacturing\",\"authors\":\"Dame Alemayehu Efa, E. M. Gutema, H. Lemu, Mahesh Gopal\",\"doi\":\"10.4028/p-so6m4z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manufacture of intricate components, products without the need for tooling, shorter lead times and material grading are the most beneficial applications of Additive Manufacturing (AM). The goal of this study is to develop a design optimization framework for developing an aircraft component using additive manufacturing utilizing topology and lattice optimization techniques. Solid works were used to create a 3D model of an aircraft bracket made of Titanium alloy. To minimize mass and maximize frequency and stiffness, the optimization was performed using Altair Inspire 2022.1 software. Component optimization was performed using the finite element method, which entails reducing material while maintaining the proper function of the modelled component. The optimal performance of the designed aerospace component using topology with lattice infill is achieved with minimization of mass from 2.24810 kg to 0.16235 kg and the volume from 5.07579x105 mm3 to 4.70922x102 mm3, frequency is increased from 0.02 kHz to 13.9537 kHz, stiffness is maximized from 1,485,884.1 N/m to 4,558,924.0939 N/m with a factor of safety of 1.73. Therefore, the mechanical properties of the optimized model can full fill its overall performance.\",\"PeriodicalId\":17714,\"journal\":{\"name\":\"Key Engineering Materials\",\"volume\":\" 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Key Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-so6m4z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-so6m4z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制造复杂的部件、无需模具的产品、更短的交付周期和材料分级是增材制造(AM)最有益的应用。本研究的目标是开发一个设计优化框架,利用拓扑和网格优化技术,使用增材制造技术开发飞机部件。研究人员使用 Solid works 创建了一个由钛合金制成的飞机支架三维模型。为了使质量最小化,频率和刚度最大化,使用 Altair Inspire 2022.1 软件进行了优化。组件优化采用有限元法,即在减少材料的同时保持建模组件的正常功能。使用带晶格填充的拓扑结构设计的航空航天组件实现了最佳性能,质量从 2.24810 千克降至 0.16235 千克,体积从 5.07579x105 毫米3降至 4.70922x102 毫米3,频率从 0.02 千赫增至 13.9537 千赫,刚度从 1,485,884.1 牛/米增至 4,558,924.0939 牛/米,安全系数为 1.73。因此,优化模型的机械性能可以充分发挥其整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Titanium Alloy-Ti-6Al-4V to Minimize Mass, Maximize Stiffness and Frequency in Additive Manufacturing
Manufacture of intricate components, products without the need for tooling, shorter lead times and material grading are the most beneficial applications of Additive Manufacturing (AM). The goal of this study is to develop a design optimization framework for developing an aircraft component using additive manufacturing utilizing topology and lattice optimization techniques. Solid works were used to create a 3D model of an aircraft bracket made of Titanium alloy. To minimize mass and maximize frequency and stiffness, the optimization was performed using Altair Inspire 2022.1 software. Component optimization was performed using the finite element method, which entails reducing material while maintaining the proper function of the modelled component. The optimal performance of the designed aerospace component using topology with lattice infill is achieved with minimization of mass from 2.24810 kg to 0.16235 kg and the volume from 5.07579x105 mm3 to 4.70922x102 mm3, frequency is increased from 0.02 kHz to 13.9537 kHz, stiffness is maximized from 1,485,884.1 N/m to 4,558,924.0939 N/m with a factor of safety of 1.73. Therefore, the mechanical properties of the optimized model can full fill its overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信