G/LFP 18650 电池第一次和第二次寿命中的老化:电池和负极在循环过程中的健康状况诊断与演变

IF 4.6 4区 化学 Q2 ELECTROCHEMISTRY
William Wheeler, Pascal Venet, Yann Bultel, A. Sari, Elie Riviere
{"title":"G/LFP 18650 电池第一次和第二次寿命中的老化:电池和负极在循环过程中的健康状况诊断与演变","authors":"William Wheeler, Pascal Venet, Yann Bultel, A. Sari, Elie Riviere","doi":"10.3390/batteries10040137","DOIUrl":null,"url":null,"abstract":"Second-life applications for lithium-ion batteries offer the industry opportunities to defer recycling costs, enhance economic value, and reduce environmental impacts. An accurate prognosis of the remaining useful life (RUL) is essential for ensuring effective second-life operation. Diagnosis is a necessary step for the establishment of a reliable prognosis, based on the aging modes involved in a cell. This paper introduces a method for characterizing specific aging phenomenon in Graphite/Lithium Iron Phosphate (G/LFP) cells. This method aims to identify aging related to the loss of active material at the negative electrode (LAMNE). The identification and tracking of the state of health (SoH) are based on Incremental Capacity Analysis (ICA) and Differential Voltage Analysis (DVA) peak-tracking techniques. The remaining capacity of the electrode is thus evaluated based on these diagnostic results, using a model derived from half-cell electrode characterization. The method is used on a G/LFP cell in the format 18650, with a nominal capacity of 1.1 Ah, aged from its pristine state to 40% of state of health.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aging in First and Second Life of G/LFP 18650 Cells: Diagnosis and Evolution of the State of Health of the Cell and the Negative Electrode under Cycling\",\"authors\":\"William Wheeler, Pascal Venet, Yann Bultel, A. Sari, Elie Riviere\",\"doi\":\"10.3390/batteries10040137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second-life applications for lithium-ion batteries offer the industry opportunities to defer recycling costs, enhance economic value, and reduce environmental impacts. An accurate prognosis of the remaining useful life (RUL) is essential for ensuring effective second-life operation. Diagnosis is a necessary step for the establishment of a reliable prognosis, based on the aging modes involved in a cell. This paper introduces a method for characterizing specific aging phenomenon in Graphite/Lithium Iron Phosphate (G/LFP) cells. This method aims to identify aging related to the loss of active material at the negative electrode (LAMNE). The identification and tracking of the state of health (SoH) are based on Incremental Capacity Analysis (ICA) and Differential Voltage Analysis (DVA) peak-tracking techniques. The remaining capacity of the electrode is thus evaluated based on these diagnostic results, using a model derived from half-cell electrode characterization. The method is used on a G/LFP cell in the format 18650, with a nominal capacity of 1.1 Ah, aged from its pristine state to 40% of state of health.\",\"PeriodicalId\":8755,\"journal\":{\"name\":\"Batteries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/batteries10040137\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10040137","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池的二次寿命应用为业界提供了推迟回收成本、提高经济价值和减少环境影响的机会。准确预测剩余使用寿命(RUL)对于确保有效的二次寿命运行至关重要。根据电池的老化模式进行诊断是建立可靠预报的必要步骤。本文介绍了一种表征石墨/磷酸铁锂(G/LFP)电池特定老化现象的方法。该方法旨在识别与负极(LAMNE)活性材料损失有关的老化。健康状态 (SoH) 的识别和跟踪基于增量容量分析 (ICA) 和差分电压分析 (DVA) 峰值跟踪技术。根据这些诊断结果,利用半电池电极特性分析得出的模型,对电极的剩余容量进行评估。该方法用于标称容量为 1.1 Ah 的 18650 型 G/LFP 电池,该电池已从原始状态老化至 40% 的健康状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aging in First and Second Life of G/LFP 18650 Cells: Diagnosis and Evolution of the State of Health of the Cell and the Negative Electrode under Cycling
Second-life applications for lithium-ion batteries offer the industry opportunities to defer recycling costs, enhance economic value, and reduce environmental impacts. An accurate prognosis of the remaining useful life (RUL) is essential for ensuring effective second-life operation. Diagnosis is a necessary step for the establishment of a reliable prognosis, based on the aging modes involved in a cell. This paper introduces a method for characterizing specific aging phenomenon in Graphite/Lithium Iron Phosphate (G/LFP) cells. This method aims to identify aging related to the loss of active material at the negative electrode (LAMNE). The identification and tracking of the state of health (SoH) are based on Incremental Capacity Analysis (ICA) and Differential Voltage Analysis (DVA) peak-tracking techniques. The remaining capacity of the electrode is thus evaluated based on these diagnostic results, using a model derived from half-cell electrode characterization. The method is used on a G/LFP cell in the format 18650, with a nominal capacity of 1.1 Ah, aged from its pristine state to 40% of state of health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Batteries
Batteries Energy-Energy Engineering and Power Technology
CiteScore
4.00
自引率
15.00%
发文量
217
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信