A. El-sebaii, S. Aboul-Enein, M. Ramadan, N. Samy, A. R. El-Sayed, S. M. Shalaby
{"title":"利用混合纳米材料提高石蜡作为潜热储存材料的热性能","authors":"A. El-sebaii, S. Aboul-Enein, M. Ramadan, N. Samy, A. R. El-Sayed, S. M. Shalaby","doi":"10.24294/can.v7i1.4912","DOIUrl":null,"url":null,"abstract":"Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion, low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use and ability to be stored at room temperature for extended periods of time. Nevertheless, improving its low thermal conductivity is still a big noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt.%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at wight concentration of 3% when nano-Cu2O, nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O, and nano-Al2O3 as it achieves the highest values of thermal conductivity and diffusivity at weight concentration 5.0 wt.%.","PeriodicalId":331072,"journal":{"name":"Characterization and Application of Nanomaterials","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the thermal properties of paraffin wax as latent heat storage material using hybrid nanomaterials\",\"authors\":\"A. El-sebaii, S. Aboul-Enein, M. Ramadan, N. Samy, A. R. El-Sayed, S. M. Shalaby\",\"doi\":\"10.24294/can.v7i1.4912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion, low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use and ability to be stored at room temperature for extended periods of time. Nevertheless, improving its low thermal conductivity is still a big noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt.%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at wight concentration of 3% when nano-Cu2O, nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O, and nano-Al2O3 as it achieves the highest values of thermal conductivity and diffusivity at weight concentration 5.0 wt.%.\",\"PeriodicalId\":331072,\"journal\":{\"name\":\"Characterization and Application of Nanomaterials\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Characterization and Application of Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/can.v7i1.4912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Characterization and Application of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/can.v7i1.4912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing the thermal properties of paraffin wax as latent heat storage material using hybrid nanomaterials
Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion, low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use and ability to be stored at room temperature for extended periods of time. Nevertheless, improving its low thermal conductivity is still a big noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt.%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at wight concentration of 3% when nano-Cu2O, nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O, and nano-Al2O3 as it achieves the highest values of thermal conductivity and diffusivity at weight concentration 5.0 wt.%.