{"title":"使用自动铺设技术和无高压釜技术制造中程飞机机翼/稳定器复合沉箱板的效率比较评估","authors":"Fedor Nasonov, Pavel Milovanov, Razmik Melkonyan","doi":"10.1007/s42401-024-00294-1","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer composite materials (PCM) are increasingly used in various fields of technology, primarily in the aviation industry, due to their high specific characteristics of structural properties and high manufacturability of molding methods for products of various functionality and undeniable advantages over traditional metal materials. The volume of PCM application in the airframe design of a number of modern and promising passenger aircraft is currently beginning to exceed 40% by weight and 80% by the area of the external contour of the aircraft. The development of automated technologies for laying out prepregs determines global trends in this direction, which consist in replacing traditional, manual methods of forming packages with automated methods of laying out. This gives significant advantages, such as a significant increase in the speed and accuracy of the process of laying out a semi-finished composite. The high demand for automation is due to increased requirements for the mechanical and precision characteristics of products. The key place in the article is given to determining the economic efficiency of methods of manufacturing composite parts for civil aviation equipment. The results of a comparative analysis of the technological cost of manufacturing parts from composite materials are presented, including assessment of the labor intensity of manufacturing work piece, material usage coefficients, share of manual labor, and degree of automation for polymer products through manual and automated technological calculations. It is shown that the use of automated technologies in the production of standard large-sized PCM panels makes it possible to reduce the consumption of basic materials by 15%, the labor intensity of manufacturing by 36% and the total manufacturing time by 28% compared to the existing level of pilot production. The key indicator of waste-free technological process (material utilization coefficient (MUC)) reaches values of 0.85–0.95.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"8 1","pages":"141 - 147"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42401-024-00294-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparative evaluation of the efficiency of manufacturing composite caisson panels of a wing/stabilizer for a medium-haul aircraft using automated laying and autoclave-free technologies\",\"authors\":\"Fedor Nasonov, Pavel Milovanov, Razmik Melkonyan\",\"doi\":\"10.1007/s42401-024-00294-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymer composite materials (PCM) are increasingly used in various fields of technology, primarily in the aviation industry, due to their high specific characteristics of structural properties and high manufacturability of molding methods for products of various functionality and undeniable advantages over traditional metal materials. The volume of PCM application in the airframe design of a number of modern and promising passenger aircraft is currently beginning to exceed 40% by weight and 80% by the area of the external contour of the aircraft. The development of automated technologies for laying out prepregs determines global trends in this direction, which consist in replacing traditional, manual methods of forming packages with automated methods of laying out. This gives significant advantages, such as a significant increase in the speed and accuracy of the process of laying out a semi-finished composite. The high demand for automation is due to increased requirements for the mechanical and precision characteristics of products. The key place in the article is given to determining the economic efficiency of methods of manufacturing composite parts for civil aviation equipment. The results of a comparative analysis of the technological cost of manufacturing parts from composite materials are presented, including assessment of the labor intensity of manufacturing work piece, material usage coefficients, share of manual labor, and degree of automation for polymer products through manual and automated technological calculations. It is shown that the use of automated technologies in the production of standard large-sized PCM panels makes it possible to reduce the consumption of basic materials by 15%, the labor intensity of manufacturing by 36% and the total manufacturing time by 28% compared to the existing level of pilot production. The key indicator of waste-free technological process (material utilization coefficient (MUC)) reaches values of 0.85–0.95.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"8 1\",\"pages\":\"141 - 147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42401-024-00294-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-024-00294-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-024-00294-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Comparative evaluation of the efficiency of manufacturing composite caisson panels of a wing/stabilizer for a medium-haul aircraft using automated laying and autoclave-free technologies
Polymer composite materials (PCM) are increasingly used in various fields of technology, primarily in the aviation industry, due to their high specific characteristics of structural properties and high manufacturability of molding methods for products of various functionality and undeniable advantages over traditional metal materials. The volume of PCM application in the airframe design of a number of modern and promising passenger aircraft is currently beginning to exceed 40% by weight and 80% by the area of the external contour of the aircraft. The development of automated technologies for laying out prepregs determines global trends in this direction, which consist in replacing traditional, manual methods of forming packages with automated methods of laying out. This gives significant advantages, such as a significant increase in the speed and accuracy of the process of laying out a semi-finished composite. The high demand for automation is due to increased requirements for the mechanical and precision characteristics of products. The key place in the article is given to determining the economic efficiency of methods of manufacturing composite parts for civil aviation equipment. The results of a comparative analysis of the technological cost of manufacturing parts from composite materials are presented, including assessment of the labor intensity of manufacturing work piece, material usage coefficients, share of manual labor, and degree of automation for polymer products through manual and automated technological calculations. It is shown that the use of automated technologies in the production of standard large-sized PCM panels makes it possible to reduce the consumption of basic materials by 15%, the labor intensity of manufacturing by 36% and the total manufacturing time by 28% compared to the existing level of pilot production. The key indicator of waste-free technological process (material utilization coefficient (MUC)) reaches values of 0.85–0.95.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion