Haoxiang Ma, Fazhan Tao, Ruonan Ren, Zhumu Fu, Nan Wang
{"title":"时变路径约束和干扰下基于扩展状态观测器的无人直升机指令滤波安全飞行控制","authors":"Haoxiang Ma, Fazhan Tao, Ruonan Ren, Zhumu Fu, Nan Wang","doi":"10.3390/drones8040158","DOIUrl":null,"url":null,"abstract":"Unmanned helicopters are always subject to various external disturbances and constraints when performing tasks. In this paper, an extended state observer-based command-filtered safe tracking control scheme is investigated for an unmanned helicopter under time-varying path constraints and disturbances. To restrict the position states within the real-time safe flight boundaries, a safe reference path is regulated using the safe protection algorithm. The ESO is utilized to handle the unknown external disturbances. Moreover, the command filter technique is combined with the backstepping approach and twice inverse solution for the nonlinear unmanned helicopter system. According to the Lyapunov stability analysis, the safety and the tracking performance of the helicopter can be proved, and the availability of the safe tracking controller can also be illustrated by numerical simulations.","PeriodicalId":507567,"journal":{"name":"Drones","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended State Observer-Based Command-Filtered Safe Flight Control for Unmanned Helicopter under Time-Varying Path Constraints and Disturbances\",\"authors\":\"Haoxiang Ma, Fazhan Tao, Ruonan Ren, Zhumu Fu, Nan Wang\",\"doi\":\"10.3390/drones8040158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned helicopters are always subject to various external disturbances and constraints when performing tasks. In this paper, an extended state observer-based command-filtered safe tracking control scheme is investigated for an unmanned helicopter under time-varying path constraints and disturbances. To restrict the position states within the real-time safe flight boundaries, a safe reference path is regulated using the safe protection algorithm. The ESO is utilized to handle the unknown external disturbances. Moreover, the command filter technique is combined with the backstepping approach and twice inverse solution for the nonlinear unmanned helicopter system. According to the Lyapunov stability analysis, the safety and the tracking performance of the helicopter can be proved, and the availability of the safe tracking controller can also be illustrated by numerical simulations.\",\"PeriodicalId\":507567,\"journal\":{\"name\":\"Drones\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones8040158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones8040158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extended State Observer-Based Command-Filtered Safe Flight Control for Unmanned Helicopter under Time-Varying Path Constraints and Disturbances
Unmanned helicopters are always subject to various external disturbances and constraints when performing tasks. In this paper, an extended state observer-based command-filtered safe tracking control scheme is investigated for an unmanned helicopter under time-varying path constraints and disturbances. To restrict the position states within the real-time safe flight boundaries, a safe reference path is regulated using the safe protection algorithm. The ESO is utilized to handle the unknown external disturbances. Moreover, the command filter technique is combined with the backstepping approach and twice inverse solution for the nonlinear unmanned helicopter system. According to the Lyapunov stability analysis, the safety and the tracking performance of the helicopter can be proved, and the availability of the safe tracking controller can also be illustrated by numerical simulations.