5G 移动网络中基于 SRv6 的边缘服务连续性

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Future Internet Pub Date : 2024-04-19 DOI:10.3390/fi16040138
Laura Lemmi, C. Puliafito, A. Virdis, E. Mingozzi
{"title":"5G 移动网络中基于 SRv6 的边缘服务连续性","authors":"Laura Lemmi, C. Puliafito, A. Virdis, E. Mingozzi","doi":"10.3390/fi16040138","DOIUrl":null,"url":null,"abstract":"Ensuring compliance with the stringent latency requirements of edge services requires close cooperation between the network and computing components. Within mobile 5G networks, the nomadic behavior of users may impact the performance of edge services, prompting the need for workload migration techniques. These techniques allow services to follow users by moving between edge nodes. This paper introduces an innovative approach for edge service continuity by integrating Segment Routing over IPv6 (SRv6) into the 5G core data plane alongside the ETSI multi-access edge computing (MEC) architecture. Our approach maintains compatibility with non-SRv6 5G network components. We use SRv6 for packet steering and Software-Defined Networking (SDN) for dynamic network configuration. Leveraging the SRv6 Network Programming paradigm, we achieve lossless workload migration by implementing a packet buffer as a virtual network function. Our buffer may be dynamically allocated and configured within the network. We test our proposed solution on a small-scale testbed consisting of an Open Network Operating System (ONOS) SDN controller and a core network made of P4 BMv2 switches, emulated using Mininet. A comparison with a non-SRv6 alternative that uses IPv6 routing shows the higher scalability and flexibility of our approach in terms of the number of rules to be installed and time required for configuration.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SRv6-Based Edge Service Continuity in 5G Mobile Networks\",\"authors\":\"Laura Lemmi, C. Puliafito, A. Virdis, E. Mingozzi\",\"doi\":\"10.3390/fi16040138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring compliance with the stringent latency requirements of edge services requires close cooperation between the network and computing components. Within mobile 5G networks, the nomadic behavior of users may impact the performance of edge services, prompting the need for workload migration techniques. These techniques allow services to follow users by moving between edge nodes. This paper introduces an innovative approach for edge service continuity by integrating Segment Routing over IPv6 (SRv6) into the 5G core data plane alongside the ETSI multi-access edge computing (MEC) architecture. Our approach maintains compatibility with non-SRv6 5G network components. We use SRv6 for packet steering and Software-Defined Networking (SDN) for dynamic network configuration. Leveraging the SRv6 Network Programming paradigm, we achieve lossless workload migration by implementing a packet buffer as a virtual network function. Our buffer may be dynamically allocated and configured within the network. We test our proposed solution on a small-scale testbed consisting of an Open Network Operating System (ONOS) SDN controller and a core network made of P4 BMv2 switches, emulated using Mininet. A comparison with a non-SRv6 alternative that uses IPv6 routing shows the higher scalability and flexibility of our approach in terms of the number of rules to be installed and time required for configuration.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi16040138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16040138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

要确保边缘服务符合严格的延迟要求,就需要网络和计算组件之间密切合作。在移动 5G 网络中,用户的游牧行为可能会影响边缘服务的性能,因此需要工作负载迁移技术。这些技术允许服务通过在边缘节点之间移动来跟随用户。本文通过将 IPv6 分段路由(SRv6)集成到 5G 核心数据平面和 ETSI 多接入边缘计算(MEC)架构中,介绍了一种创新的边缘服务连续性方法。我们的方法保持了与非 SRv6 5G 网络组件的兼容性。我们使用 SRv6 进行数据包转向,使用软件定义网络(SDN)进行动态网络配置。利用 SRv6 网络编程范例,我们通过将数据包缓冲区作为虚拟网络功能来实现无损工作负载迁移。我们的缓冲区可在网络内动态分配和配置。我们在一个由开放网络操作系统(ONOS)SDN 控制器和使用 Mininet 仿真的 P4 BMv2 交换机组成的核心网络组成的小型测试平台上测试了我们提出的解决方案。与使用 IPv6 路由的非 SRv6 替代方案相比,我们的方法在安装规则数量和配置所需时间方面具有更高的可扩展性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SRv6-Based Edge Service Continuity in 5G Mobile Networks
Ensuring compliance with the stringent latency requirements of edge services requires close cooperation between the network and computing components. Within mobile 5G networks, the nomadic behavior of users may impact the performance of edge services, prompting the need for workload migration techniques. These techniques allow services to follow users by moving between edge nodes. This paper introduces an innovative approach for edge service continuity by integrating Segment Routing over IPv6 (SRv6) into the 5G core data plane alongside the ETSI multi-access edge computing (MEC) architecture. Our approach maintains compatibility with non-SRv6 5G network components. We use SRv6 for packet steering and Software-Defined Networking (SDN) for dynamic network configuration. Leveraging the SRv6 Network Programming paradigm, we achieve lossless workload migration by implementing a packet buffer as a virtual network function. Our buffer may be dynamically allocated and configured within the network. We test our proposed solution on a small-scale testbed consisting of an Open Network Operating System (ONOS) SDN controller and a core network made of P4 BMv2 switches, emulated using Mininet. A comparison with a non-SRv6 alternative that uses IPv6 routing shows the higher scalability and flexibility of our approach in terms of the number of rules to be installed and time required for configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信