论涉及帕多万多项式和伯恩斯坦多项式的吉凶属性的吉凶三项式序列

G. Janaki, R. Sarulatha
{"title":"论涉及帕多万多项式和伯恩斯坦多项式的吉凶属性的吉凶三项式序列","authors":"G. Janaki, R. Sarulatha","doi":"10.17485/ijst/v17i16.160","DOIUrl":null,"url":null,"abstract":"Objective: To bring forth a new conception in the time-honoured field of Diophantine triples, namely “Geophine triple”. To examine the feasibility of proliferating an unending sequence of Geophine triples from Geophine pairs with the property comprising Padovan and Bernstein polynomial. Method: Established Geophine triples employing Padovan and Bernstein polynomial by the method of polynomial manipulations. Findings: An unending sequences of Geophine triples and with the property and are promulgated from Geophine pairs, precisely involving Padovan and Bernstein polynomials and few numerical representation of the sequences are computed using MATLAB. Novelty: This article carries an innovative approach of determining this definite type of triples using Geometric mean and thereby, two infinite sequences of Geophine triples with the property are ascertained. Also, few numerical representations of the sequences utilizing MATLAB program are figured out, thus broadening the scope of computational Number Theory. Keywords: Polynomial Diophantine triple, Geophine triple, Bernstein polynomial, Padovan polynomials, Pell’s equation, Special Polynomials","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Sequences of Geophine Triples Involving Padovan and Bernstein Polynomial with Propitious Property\",\"authors\":\"G. Janaki, R. Sarulatha\",\"doi\":\"10.17485/ijst/v17i16.160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: To bring forth a new conception in the time-honoured field of Diophantine triples, namely “Geophine triple”. To examine the feasibility of proliferating an unending sequence of Geophine triples from Geophine pairs with the property comprising Padovan and Bernstein polynomial. Method: Established Geophine triples employing Padovan and Bernstein polynomial by the method of polynomial manipulations. Findings: An unending sequences of Geophine triples and with the property and are promulgated from Geophine pairs, precisely involving Padovan and Bernstein polynomials and few numerical representation of the sequences are computed using MATLAB. Novelty: This article carries an innovative approach of determining this definite type of triples using Geometric mean and thereby, two infinite sequences of Geophine triples with the property are ascertained. Also, few numerical representations of the sequences utilizing MATLAB program are figured out, thus broadening the scope of computational Number Theory. Keywords: Polynomial Diophantine triple, Geophine triple, Bernstein polynomial, Padovan polynomials, Pell’s equation, Special Polynomials\",\"PeriodicalId\":13296,\"journal\":{\"name\":\"Indian journal of science and technology\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17485/ijst/v17i16.160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i16.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的在历史悠久的 Diophantine 三元组领域提出一个新概念,即 "Geophine 三元组"。研究从具有帕多万多项式和伯恩斯坦多项式性质的 Geophine 对增殖出无穷无尽的 Geophine 三元组序列的可行性。方法用多项式操作法建立帕多万多项式和伯恩斯坦多项式的 Geophine 三元组。研究结果利用 MATLAB 计算了序列的一些数值表示。新颖性:本文采用创新方法,利用几何平均数确定这种确定类型的三元组,从而确定了两个具有该性质的 Geophine 三元组的无限序列。此外,还利用 MATLAB 程序计算了序列的一些数值表示,从而拓宽了计算数论的范围。关键词多项式 Diophantine 三重、Geophine 三重、伯恩斯坦多项式、Padovan 多项式、佩尔方程、特殊多项式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Sequences of Geophine Triples Involving Padovan and Bernstein Polynomial with Propitious Property
Objective: To bring forth a new conception in the time-honoured field of Diophantine triples, namely “Geophine triple”. To examine the feasibility of proliferating an unending sequence of Geophine triples from Geophine pairs with the property comprising Padovan and Bernstein polynomial. Method: Established Geophine triples employing Padovan and Bernstein polynomial by the method of polynomial manipulations. Findings: An unending sequences of Geophine triples and with the property and are promulgated from Geophine pairs, precisely involving Padovan and Bernstein polynomials and few numerical representation of the sequences are computed using MATLAB. Novelty: This article carries an innovative approach of determining this definite type of triples using Geometric mean and thereby, two infinite sequences of Geophine triples with the property are ascertained. Also, few numerical representations of the sequences utilizing MATLAB program are figured out, thus broadening the scope of computational Number Theory. Keywords: Polynomial Diophantine triple, Geophine triple, Bernstein polynomial, Padovan polynomials, Pell’s equation, Special Polynomials
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信