利用 SPME-GC-MS 和化学计量学分析鉴别牛肉、猪肉及其混合物中的挥发性化合物

IF 4.2 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Z. Ahamed, Jin-kyu Seo, Jeong-Uk Eom, Han-Sul Yang
{"title":"利用 SPME-GC-MS 和化学计量学分析鉴别牛肉、猪肉及其混合物中的挥发性化合物","authors":"Z. Ahamed, Jin-kyu Seo, Jeong-Uk Eom, Han-Sul Yang","doi":"10.5851/kosfa.2024.e32","DOIUrl":null,"url":null,"abstract":"27 This study addresses the prevalent issue of meat species authentication and adulteration 28 through a chemometrics-based approach, crucial for upholding public health and ensuring a 29 fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-30 phase-microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). 31 Adulterated meat samples were effectively identified through principal component analysis 32 (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance 33 in projection (VIP) scores and a Random Forest test, 11 key compounds, including nonanal, 34 octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, 35 and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified 36 as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on 37 adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly 38 influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with 39 the first two components capturing 80% and 72.1% of total variance, respectively. This 40 technique could be a reliable method for detecting meat adulteration in cooked meat. 41","PeriodicalId":12459,"journal":{"name":"Food Science of Animal Resources","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volatile compounds for discrimination between beef, pork, and their\\n admixture using SPME-GC-MS and chemometrics analysis\",\"authors\":\"Z. Ahamed, Jin-kyu Seo, Jeong-Uk Eom, Han-Sul Yang\",\"doi\":\"10.5851/kosfa.2024.e32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"27 This study addresses the prevalent issue of meat species authentication and adulteration 28 through a chemometrics-based approach, crucial for upholding public health and ensuring a 29 fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-30 phase-microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). 31 Adulterated meat samples were effectively identified through principal component analysis 32 (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance 33 in projection (VIP) scores and a Random Forest test, 11 key compounds, including nonanal, 34 octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, 35 and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified 36 as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on 37 adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly 38 influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with 39 the first two components capturing 80% and 72.1% of total variance, respectively. This 40 technique could be a reliable method for detecting meat adulteration in cooked meat. 41\",\"PeriodicalId\":12459,\"journal\":{\"name\":\"Food Science of Animal Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science of Animal Resources\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5851/kosfa.2024.e32\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science of Animal Resources","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5851/kosfa.2024.e32","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

27 本研究通过基于化学计量学的方法解决了肉类品种鉴别和掺假 28 这一普遍存在的问题,这对维护公众健康和确保市场公平至关重要 29。采用顶空-固相-微萃取-气相色谱-质谱法(HS-SPME-GC-MS)提取和分析挥发性化合物。31 通过主成分分析(PCA)32 和偏最小二乘法判别分析(PLS-DA),有效识别了掺假肉类样品。通过变量重要性 33 预测(VIP)得分和随机森林测试,11 种关键化合物,包括牛肉中的壬醛、34 十八醛、十六醛、苯甲醛、1-辛醇、己酸、庚酸、辛酸、35 和 2-乙酰基吡咯,以及猪肉中的己醛和 1-辛烯-3-醇,被确定为生物标记物 36。根据 37 掺假比率,这些化合物在掺假样品中呈现出明显的趋势,这在热图中很明显。值得注意的是,脂质降解化合物强烈影响肉类 38 的鉴别。PCA 和 PLS-DA 可显著分离样品,39 前两个成分分别占总方差的 80% 和 72.1%。40 该技术可作为检测熟肉中肉类掺假的可靠方法。41
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volatile compounds for discrimination between beef, pork, and their admixture using SPME-GC-MS and chemometrics analysis
27 This study addresses the prevalent issue of meat species authentication and adulteration 28 through a chemometrics-based approach, crucial for upholding public health and ensuring a 29 fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-30 phase-microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). 31 Adulterated meat samples were effectively identified through principal component analysis 32 (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance 33 in projection (VIP) scores and a Random Forest test, 11 key compounds, including nonanal, 34 octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, 35 and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified 36 as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on 37 adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly 38 influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with 39 the first two components capturing 80% and 72.1% of total variance, respectively. This 40 technique could be a reliable method for detecting meat adulteration in cooked meat. 41
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Science of Animal Resources
Food Science of Animal Resources Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
6.70
自引率
6.70%
发文量
75
期刊介绍: Food Science of Animal Resources (Food Sci. Anim. Resour.) is an international, peer-reviewed journal publishing original research and review articles on scientific and technological aspects of chemistry, biotechnology, processing, engineering, and microbiology of meat, egg, dairy, and edible insect/worm products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信