涉及 Hilfer-Hadamard 分数微分方程的解法

Lata Chanchlani, P. Manohar, Ajay Sharma, Sangeeta Choudhary
{"title":"涉及 Hilfer-Hadamard 分数微分方程的解法","authors":"Lata Chanchlani, P. Manohar, Ajay Sharma, Sangeeta Choudhary","doi":"10.17485/ijst/v17i16.2514","DOIUrl":null,"url":null,"abstract":"Objectives: The aim is to establish prerequisite properties for the Hilfer-Hadamard fractional derivatives and address boundary value problems related to fractional polar Laplace and fractional Sturm-Liouville equations involving Hilfer-Hadamard fractional derivatives. Methods: Existing definitions and findings are utilized to obtain the properties for fractional derivatives, and the Adomian decomposition method is employed to solve the fractional differential equations. Findings: Validity conditions for the law of exponents are determined, and the study investigates the fractional differential equations and their corresponding solutions, possessing the capacity to replace the traditional polar Laplace and Sturm-Liouville boundary value problems to effectively represent real-world phenomena. Novelty: The study introduces the substitution of two consecutively operated Hilfer-Hadamard fractional derivatives with a corresponding single Hilfer-Hadamard fractional derivative using the law of exponents. Additionally, the polar Laplace and Sturm-Liouville boundary value problems are extended to their respective fractional counterparts, expressed in a concise format using HilferHadamard fractional derivatives. Keywords: Adomian decomposition method, Hilfer-Hadamard fractional derivative, Fractional polar Laplace equation, Fractional Sturm-Liouville boundary value problem","PeriodicalId":13296,"journal":{"name":"Indian journal of science and technology","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of Fractional Differential Equations Involving Hilfer-Hadamard Fractional Derivatives\",\"authors\":\"Lata Chanchlani, P. Manohar, Ajay Sharma, Sangeeta Choudhary\",\"doi\":\"10.17485/ijst/v17i16.2514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: The aim is to establish prerequisite properties for the Hilfer-Hadamard fractional derivatives and address boundary value problems related to fractional polar Laplace and fractional Sturm-Liouville equations involving Hilfer-Hadamard fractional derivatives. Methods: Existing definitions and findings are utilized to obtain the properties for fractional derivatives, and the Adomian decomposition method is employed to solve the fractional differential equations. Findings: Validity conditions for the law of exponents are determined, and the study investigates the fractional differential equations and their corresponding solutions, possessing the capacity to replace the traditional polar Laplace and Sturm-Liouville boundary value problems to effectively represent real-world phenomena. Novelty: The study introduces the substitution of two consecutively operated Hilfer-Hadamard fractional derivatives with a corresponding single Hilfer-Hadamard fractional derivative using the law of exponents. Additionally, the polar Laplace and Sturm-Liouville boundary value problems are extended to their respective fractional counterparts, expressed in a concise format using HilferHadamard fractional derivatives. Keywords: Adomian decomposition method, Hilfer-Hadamard fractional derivative, Fractional polar Laplace equation, Fractional Sturm-Liouville boundary value problem\",\"PeriodicalId\":13296,\"journal\":{\"name\":\"Indian journal of science and technology\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17485/ijst/v17i16.2514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i16.2514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究目的目的是建立 Hilfer-Hadamard 分数导数的前提性质,并解决与涉及 Hilfer-Hadamard 分数导数的分数极拉普拉斯方程和分数 Sturm-Liouville 方程有关的边界值问题。方法:利用现有定义和研究成果获得分数导数的性质,并采用阿多米分解法求解分数微分方程。研究结果确定了指数规律的有效性条件,研究了分数微分方程及其相应的解,有能力取代传统的极拉普拉斯和 Sturm-Liouville 边界值问题,有效地表示现实世界的现象。新颖性:研究介绍了利用指数定律将两个连续运算的 Hilfer-Hadamard 分数导数替换为相应的单个 Hilfer-Hadamard 分数导数。此外,极拉普拉斯和 Sturm-Liouville 边界值问题被扩展到各自的分数对应问题,并使用 Hilfer-Hadamard 分数导数以简洁的格式表达。关键词阿多米分解法 Hilfer-Hadamard 分数导数 分数极拉普拉斯方程 分数 Sturm-Liouville 边界值问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of Fractional Differential Equations Involving Hilfer-Hadamard Fractional Derivatives
Objectives: The aim is to establish prerequisite properties for the Hilfer-Hadamard fractional derivatives and address boundary value problems related to fractional polar Laplace and fractional Sturm-Liouville equations involving Hilfer-Hadamard fractional derivatives. Methods: Existing definitions and findings are utilized to obtain the properties for fractional derivatives, and the Adomian decomposition method is employed to solve the fractional differential equations. Findings: Validity conditions for the law of exponents are determined, and the study investigates the fractional differential equations and their corresponding solutions, possessing the capacity to replace the traditional polar Laplace and Sturm-Liouville boundary value problems to effectively represent real-world phenomena. Novelty: The study introduces the substitution of two consecutively operated Hilfer-Hadamard fractional derivatives with a corresponding single Hilfer-Hadamard fractional derivative using the law of exponents. Additionally, the polar Laplace and Sturm-Liouville boundary value problems are extended to their respective fractional counterparts, expressed in a concise format using HilferHadamard fractional derivatives. Keywords: Adomian decomposition method, Hilfer-Hadamard fractional derivative, Fractional polar Laplace equation, Fractional Sturm-Liouville boundary value problem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信