Anastasiia Artuyants, George Guo, Marcella Flinterman, Martin Middleditch, Bincy Jacob, Kate Lee, Laura Vella, Huaqi Su, Michelle Wilson, Lois Eva, Andrew N. Shelling, Cherie Blenkiron
{"title":"肿瘤来源的细胞外囊泡蛋白质组因子宫内膜癌组织学而异,并受到肥胖环境的影响。","authors":"Anastasiia Artuyants, George Guo, Marcella Flinterman, Martin Middleditch, Bincy Jacob, Kate Lee, Laura Vella, Huaqi Su, Michelle Wilson, Lois Eva, Andrew N. Shelling, Cherie Blenkiron","doi":"10.1002/pmic.202300055","DOIUrl":null,"url":null,"abstract":"<p>Endometrial cancer, the most common gynaecological cancer worldwide, is closely linked to obesity and metabolic diseases, particularly in younger women. New circulating biomarkers have the potential to improve diagnosis and treatment selections, which could significantly improve outcomes. Our approach focuses on extracellular vesicle (EV) biomarker discovery by directly profiling the proteome of EVs enriched from frozen biobanked endometrial tumours. We analysed nine tissue samples to compare three clinical subgroups—low BMI (Body Mass Index) Endometrioid, high BMI Endometrioid, and Serous (any BMI)—identifying proteins related to histological subtype, BMI, and shared secreted proteins. Using collagenase digestion and size exclusion chromatography, we successfully enriched generous quantities of EVs (range 204.8–1291.0 µg protein: 1.38 × 10<sup>11</sup>–1.10 × 10<sup>12</sup> particles), characterised by their size (∼150 nm), expression of EV markers (CD63/81), and proposed endometrial cancer markers (L1CAM, ANXA2). Mass spectrometry-based proteomic profiling identified 2075 proteins present in at least one of the 18 samples. Compared to cell lysates, EVs were successfully depleted for mitochondrial and blood proteins and enriched for common EV markers and large secreted proteins. Further analysis highlighted significant differences in EV protein profiles between the high BMI subgroup and others, underlining the impact of comorbidities on the EV secretome. Interestingly, proteins differentially abundant in tissue subgroups were largely not also differential in matched EVs. This research identified secreted proteins known to be involved in endometrial cancer pathophysiology and proposed novel diagnostic biomarkers (EIF6, MUC16, PROM1, SLC26A2).</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":"24 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202300055","citationCount":"0","resultStr":"{\"title\":\"The tumour-derived extracellular vesicle proteome varies by endometrial cancer histology and is confounded by an obesogenic environment\",\"authors\":\"Anastasiia Artuyants, George Guo, Marcella Flinterman, Martin Middleditch, Bincy Jacob, Kate Lee, Laura Vella, Huaqi Su, Michelle Wilson, Lois Eva, Andrew N. Shelling, Cherie Blenkiron\",\"doi\":\"10.1002/pmic.202300055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Endometrial cancer, the most common gynaecological cancer worldwide, is closely linked to obesity and metabolic diseases, particularly in younger women. New circulating biomarkers have the potential to improve diagnosis and treatment selections, which could significantly improve outcomes. Our approach focuses on extracellular vesicle (EV) biomarker discovery by directly profiling the proteome of EVs enriched from frozen biobanked endometrial tumours. We analysed nine tissue samples to compare three clinical subgroups—low BMI (Body Mass Index) Endometrioid, high BMI Endometrioid, and Serous (any BMI)—identifying proteins related to histological subtype, BMI, and shared secreted proteins. Using collagenase digestion and size exclusion chromatography, we successfully enriched generous quantities of EVs (range 204.8–1291.0 µg protein: 1.38 × 10<sup>11</sup>–1.10 × 10<sup>12</sup> particles), characterised by their size (∼150 nm), expression of EV markers (CD63/81), and proposed endometrial cancer markers (L1CAM, ANXA2). Mass spectrometry-based proteomic profiling identified 2075 proteins present in at least one of the 18 samples. Compared to cell lysates, EVs were successfully depleted for mitochondrial and blood proteins and enriched for common EV markers and large secreted proteins. Further analysis highlighted significant differences in EV protein profiles between the high BMI subgroup and others, underlining the impact of comorbidities on the EV secretome. Interestingly, proteins differentially abundant in tissue subgroups were largely not also differential in matched EVs. This research identified secreted proteins known to be involved in endometrial cancer pathophysiology and proposed novel diagnostic biomarkers (EIF6, MUC16, PROM1, SLC26A2).</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\"24 11\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202300055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300055\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300055","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The tumour-derived extracellular vesicle proteome varies by endometrial cancer histology and is confounded by an obesogenic environment
Endometrial cancer, the most common gynaecological cancer worldwide, is closely linked to obesity and metabolic diseases, particularly in younger women. New circulating biomarkers have the potential to improve diagnosis and treatment selections, which could significantly improve outcomes. Our approach focuses on extracellular vesicle (EV) biomarker discovery by directly profiling the proteome of EVs enriched from frozen biobanked endometrial tumours. We analysed nine tissue samples to compare three clinical subgroups—low BMI (Body Mass Index) Endometrioid, high BMI Endometrioid, and Serous (any BMI)—identifying proteins related to histological subtype, BMI, and shared secreted proteins. Using collagenase digestion and size exclusion chromatography, we successfully enriched generous quantities of EVs (range 204.8–1291.0 µg protein: 1.38 × 1011–1.10 × 1012 particles), characterised by their size (∼150 nm), expression of EV markers (CD63/81), and proposed endometrial cancer markers (L1CAM, ANXA2). Mass spectrometry-based proteomic profiling identified 2075 proteins present in at least one of the 18 samples. Compared to cell lysates, EVs were successfully depleted for mitochondrial and blood proteins and enriched for common EV markers and large secreted proteins. Further analysis highlighted significant differences in EV protein profiles between the high BMI subgroup and others, underlining the impact of comorbidities on the EV secretome. Interestingly, proteins differentially abundant in tissue subgroups were largely not also differential in matched EVs. This research identified secreted proteins known to be involved in endometrial cancer pathophysiology and proposed novel diagnostic biomarkers (EIF6, MUC16, PROM1, SLC26A2).
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.