{"title":"单链 DNA 对 DNA 稳定的纳米银团簇的惰性如何?案例研究。","authors":"Vanessa Rück, Cecilia Cerretani, Tom Vosch","doi":"10.1002/cptc.202400014","DOIUrl":null,"url":null,"abstract":"<p>A case study, detailing the effect of different DNA oligomers on a NIR-emitting DNA-stabilized silver nanocluster (DNA-AgNC), is reported. The presence of single-stranded DNA oligomers was found to adversely affect the chemical stability of (DNA)<sub>2</sub>[Ag<sub>16</sub>Cl<sub>2</sub>]<sup>8+</sup> with distinct degrees of destruction depending on the DNA sequence. To increase the chemical stability of the DNA-AgNC, we implemented two protection strategies. First, hybridization of the bare DNA strands with the corresponding complementary sequences dramatically reduced the destruction of (DNA)<sub>2</sub>[Ag<sub>16</sub>Cl<sub>2</sub>]<sup>8+</sup>, as demonstrated by the decreased drops in both the absorption and emission spectra. Secondly, saturation of the free DNA oligomers with silver cations left (DNA)<sub>2</sub>[Ag<sub>16</sub>Cl<sub>2</sub>]<sup>8+</sup> intact. Our investigation can thus provide an easy-to-implement approach to discover DNA sequences that are intrinsically less reactive towards preformed DNA-AgNCs, and give an idea on how to protect DNA-AgNCs from bare DNA strands.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400014","citationCount":"0","resultStr":"{\"title\":\"How Inert is Single-Stranded DNA Towards DNA-Stabilized Silver Nanoclusters? A Case Study\",\"authors\":\"Vanessa Rück, Cecilia Cerretani, Tom Vosch\",\"doi\":\"10.1002/cptc.202400014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A case study, detailing the effect of different DNA oligomers on a NIR-emitting DNA-stabilized silver nanocluster (DNA-AgNC), is reported. The presence of single-stranded DNA oligomers was found to adversely affect the chemical stability of (DNA)<sub>2</sub>[Ag<sub>16</sub>Cl<sub>2</sub>]<sup>8+</sup> with distinct degrees of destruction depending on the DNA sequence. To increase the chemical stability of the DNA-AgNC, we implemented two protection strategies. First, hybridization of the bare DNA strands with the corresponding complementary sequences dramatically reduced the destruction of (DNA)<sub>2</sub>[Ag<sub>16</sub>Cl<sub>2</sub>]<sup>8+</sup>, as demonstrated by the decreased drops in both the absorption and emission spectra. Secondly, saturation of the free DNA oligomers with silver cations left (DNA)<sub>2</sub>[Ag<sub>16</sub>Cl<sub>2</sub>]<sup>8+</sup> intact. Our investigation can thus provide an easy-to-implement approach to discover DNA sequences that are intrinsically less reactive towards preformed DNA-AgNCs, and give an idea on how to protect DNA-AgNCs from bare DNA strands.</p>\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"8 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400014\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400014","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文报告了一项案例研究,详细阐述了不同 DNA 链对近红外发光 DNA 稳定银纳米簇(DNA-AgNC)的影响。研究发现,单链 DNA 寡聚体的存在会对 (DNA)2[Ag16Cl2]8+ 的化学稳定性产生不利影响,根据 DNA 序列的不同,破坏程度也不同。为了提高 DNA-AgNC 的化学稳定性,我们采用了两种保护策略。首先,将裸 DNA 链与相应的互补序列杂交,大大降低了 (DNA)2[Ag16Cl2]8+ 的破坏程度,吸收光谱和发射光谱中的降幅都有所减小就证明了这一点。其次,用银阳离子钝化裸 DNA 寡聚体后,(DNA)2[Ag16Cl2]8+ 依然完好无损。因此,我们的研究提供了一种简便易行的方法来发现对预制 DNA-AgNCs 反应性较低的 DNA 序列,并为如何保护 DNA-AgNCs 免受裸 DNA 链的影响提供了思路。
How Inert is Single-Stranded DNA Towards DNA-Stabilized Silver Nanoclusters? A Case Study
A case study, detailing the effect of different DNA oligomers on a NIR-emitting DNA-stabilized silver nanocluster (DNA-AgNC), is reported. The presence of single-stranded DNA oligomers was found to adversely affect the chemical stability of (DNA)2[Ag16Cl2]8+ with distinct degrees of destruction depending on the DNA sequence. To increase the chemical stability of the DNA-AgNC, we implemented two protection strategies. First, hybridization of the bare DNA strands with the corresponding complementary sequences dramatically reduced the destruction of (DNA)2[Ag16Cl2]8+, as demonstrated by the decreased drops in both the absorption and emission spectra. Secondly, saturation of the free DNA oligomers with silver cations left (DNA)2[Ag16Cl2]8+ intact. Our investigation can thus provide an easy-to-implement approach to discover DNA sequences that are intrinsically less reactive towards preformed DNA-AgNCs, and give an idea on how to protect DNA-AgNCs from bare DNA strands.