基于反电平集和相加公式的转换波断层成像技术

C. A. Niño, C. Duarte, W. Agudelo, D. A. Sierra, M. D. Sacchi
{"title":"基于反电平集和相加公式的转换波断层成像技术","authors":"C. A. Niño, C. Duarte, W. Agudelo, D. A. Sierra, M. D. Sacchi","doi":"10.1093/gji/ggae147","DOIUrl":null,"url":null,"abstract":"\n Shear wave velocity (Vs) is a fundamental property of elastic media whose estimation from PS converted waves is challenging and requires modeling the boundary where P to S conversion occurs. This paper presents a PS tomography where seismic wave conversion/reflection points correspond to reflectors modelled with the level-set function set to zero (φ(x, z) = 0). The proposed method aims for stable Vs inversion in a seismic acquisition setting using multicomponent receivers. Synthetic models simulating true Vs, Vp and the location of the geological reflector are used in the study. The inversion starts by locating a flat reflector, φ(x, z) = 0, which defines the zone Ω1 between the surface and the reflector, where the initial Vs and Vp fields are also set. To calculate the traveltimes of incident PT (P wave that propagates in Ω1 from source to the reflector) , converted PS, and reflected PP waves, for both observed and modelled data (forward problem), the methodology proposed by Rawlinson and Sambridge is adopted. This method uses the arrival times of the P-waves, Tpt, from the seismic source at each reflector point as secondary sources generating the times Tps and Tpp. These times are calculated as a solution to the Eikonal equation by using the Fast Marching method. The PS and PP residual times are minimized by updating Vs, Vp, and φ(x, z) = 0 through adjoint variables designed from a formulation using Lagrange Multipliers in a variational context. The performance of the algorithm is evaluated for models with synclinal, sinusoidal and monoclinal reflector geometries using numerical tests considering the inversion of: 1) φ, given the true values of Vs and Vp; 2) φ and Vs, given the true value of Vp; 3) φ and Vp, given the true value of Vs; and 4) the three parameters φ, Vs, and Vp, simultaneously. Good results are obtained by inverting Vs and φ, given the true value of Vp. The simultaneous inversion of the three parameters exhibits promising results, despite the illumination problems caused by the different distribution of the PS, PP, and PT time gradients due to the geometry of the reflectors and the acquisition setting (sources-receivers in the same plane). The proposed tomography estimates Vs and reflector positions which could help in statics corrections and improve the lithological characterization of near surface.","PeriodicalId":502458,"journal":{"name":"Geophysical Journal International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Converted Wave Tomography Based on Inverse Level Set and Adjoint Formulation\",\"authors\":\"C. A. Niño, C. Duarte, W. Agudelo, D. A. Sierra, M. D. Sacchi\",\"doi\":\"10.1093/gji/ggae147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Shear wave velocity (Vs) is a fundamental property of elastic media whose estimation from PS converted waves is challenging and requires modeling the boundary where P to S conversion occurs. This paper presents a PS tomography where seismic wave conversion/reflection points correspond to reflectors modelled with the level-set function set to zero (φ(x, z) = 0). The proposed method aims for stable Vs inversion in a seismic acquisition setting using multicomponent receivers. Synthetic models simulating true Vs, Vp and the location of the geological reflector are used in the study. The inversion starts by locating a flat reflector, φ(x, z) = 0, which defines the zone Ω1 between the surface and the reflector, where the initial Vs and Vp fields are also set. To calculate the traveltimes of incident PT (P wave that propagates in Ω1 from source to the reflector) , converted PS, and reflected PP waves, for both observed and modelled data (forward problem), the methodology proposed by Rawlinson and Sambridge is adopted. This method uses the arrival times of the P-waves, Tpt, from the seismic source at each reflector point as secondary sources generating the times Tps and Tpp. These times are calculated as a solution to the Eikonal equation by using the Fast Marching method. The PS and PP residual times are minimized by updating Vs, Vp, and φ(x, z) = 0 through adjoint variables designed from a formulation using Lagrange Multipliers in a variational context. The performance of the algorithm is evaluated for models with synclinal, sinusoidal and monoclinal reflector geometries using numerical tests considering the inversion of: 1) φ, given the true values of Vs and Vp; 2) φ and Vs, given the true value of Vp; 3) φ and Vp, given the true value of Vs; and 4) the three parameters φ, Vs, and Vp, simultaneously. Good results are obtained by inverting Vs and φ, given the true value of Vp. The simultaneous inversion of the three parameters exhibits promising results, despite the illumination problems caused by the different distribution of the PS, PP, and PT time gradients due to the geometry of the reflectors and the acquisition setting (sources-receivers in the same plane). The proposed tomography estimates Vs and reflector positions which could help in statics corrections and improve the lithological characterization of near surface.\",\"PeriodicalId\":502458,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gji/ggae147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

剪切波速度(Vs)是弹性介质的基本属性,从 PS 转换波估算剪切波速度具有挑战性,需要对发生 P 到 S 转换的边界进行建模。本文提出了一种 PS 层析成像法,其中地震波转换/反射点对应于反射体建模,水平集函数设为零(φ(x, z) = 0)。所提出的方法旨在使用多分量接收机在地震采集环境中进行稳定的 Vs 反演。研究中使用了模拟真实 Vs、Vp 和地质反射体位置的合成模型。反演开始时,首先确定一个平面反射体的位置 φ(x, z) = 0,它定义了地表和反射体之间的区域 Ω1,初始 Vs 和 Vp 场也设置在该区域。为了计算观测数据和模拟数据(前向问题)中入射 PT 波(P 波在 Ω1 内从声源传播到反射器)、转换 PS 波和反射 PP 波的传播时间,采用了 Rawlinson 和 Sambridge 提出的方法。该方法将震源的 P 波到达每个反射点的时间 Tpt 作为产生时间 Tps 和 Tpp 的次要来源。这些时间是通过快速行进法作为艾克纳方程的解计算出来的。通过在变异背景下使用拉格朗日乘法器设计的公式更新 Vs、Vp 和 φ(x, z) = 0,使 PS 和 PP 的残差时间最小化。利用数值测试评估了该算法在具有同轴、正弦和单斜反射器几何形状的模型中的性能,并考虑了以下反演情况:1) 根据 Vs 和 Vp 的真实值反演 φ;2) 根据 Vp 的真实值反演 φ 和 Vs;3) 根据 Vs 的真实值反演 φ 和 Vp;4) 同时反演 φ、Vs 和 Vp 三个参数。在给定 Vp 真实值的情况下,通过反演 Vs 和 φ 可以获得良好的结果。尽管由于反射器的几何形状和采集设置(光源-接收器在同一平面内),PS、PP 和 PT 时间梯度的分布不同,造成了光照问题,但同时反演这三个参数还是取得了很好的结果。建议的层析成像估算 Vs 和反射器位置,有助于进行静态校正,并改进近地表的岩性特征描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Converted Wave Tomography Based on Inverse Level Set and Adjoint Formulation
Shear wave velocity (Vs) is a fundamental property of elastic media whose estimation from PS converted waves is challenging and requires modeling the boundary where P to S conversion occurs. This paper presents a PS tomography where seismic wave conversion/reflection points correspond to reflectors modelled with the level-set function set to zero (φ(x, z) = 0). The proposed method aims for stable Vs inversion in a seismic acquisition setting using multicomponent receivers. Synthetic models simulating true Vs, Vp and the location of the geological reflector are used in the study. The inversion starts by locating a flat reflector, φ(x, z) = 0, which defines the zone Ω1 between the surface and the reflector, where the initial Vs and Vp fields are also set. To calculate the traveltimes of incident PT (P wave that propagates in Ω1 from source to the reflector) , converted PS, and reflected PP waves, for both observed and modelled data (forward problem), the methodology proposed by Rawlinson and Sambridge is adopted. This method uses the arrival times of the P-waves, Tpt, from the seismic source at each reflector point as secondary sources generating the times Tps and Tpp. These times are calculated as a solution to the Eikonal equation by using the Fast Marching method. The PS and PP residual times are minimized by updating Vs, Vp, and φ(x, z) = 0 through adjoint variables designed from a formulation using Lagrange Multipliers in a variational context. The performance of the algorithm is evaluated for models with synclinal, sinusoidal and monoclinal reflector geometries using numerical tests considering the inversion of: 1) φ, given the true values of Vs and Vp; 2) φ and Vs, given the true value of Vp; 3) φ and Vp, given the true value of Vs; and 4) the three parameters φ, Vs, and Vp, simultaneously. Good results are obtained by inverting Vs and φ, given the true value of Vp. The simultaneous inversion of the three parameters exhibits promising results, despite the illumination problems caused by the different distribution of the PS, PP, and PT time gradients due to the geometry of the reflectors and the acquisition setting (sources-receivers in the same plane). The proposed tomography estimates Vs and reflector positions which could help in statics corrections and improve the lithological characterization of near surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信