{"title":"带动力学边界条件的波方程的多项式能量衰减率","authors":"K. Laoubi, D. Seba","doi":"10.1007/s10440-024-00650-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper concerns the polynomial decay of the dissipative wave equation subject to Kinetic boundary condition and non-neglected density in the square. After reformulating this problem into an abstract Cauchy problem, we show the existence and uniqueness of the solution. Then, by analyzing a family of eigenvalues of the corresponding operator, we prove that the rate of energy decay decreases in a polynomial way.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"191 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial Energy Decay Rate for the Wave Equation with Kinetic Boundary Condition\",\"authors\":\"K. Laoubi, D. Seba\",\"doi\":\"10.1007/s10440-024-00650-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper concerns the polynomial decay of the dissipative wave equation subject to Kinetic boundary condition and non-neglected density in the square. After reformulating this problem into an abstract Cauchy problem, we show the existence and uniqueness of the solution. Then, by analyzing a family of eigenvalues of the corresponding operator, we prove that the rate of energy decay decreases in a polynomial way.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00650-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00650-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Polynomial Energy Decay Rate for the Wave Equation with Kinetic Boundary Condition
This paper concerns the polynomial decay of the dissipative wave equation subject to Kinetic boundary condition and non-neglected density in the square. After reformulating this problem into an abstract Cauchy problem, we show the existence and uniqueness of the solution. Then, by analyzing a family of eigenvalues of the corresponding operator, we prove that the rate of energy decay decreases in a polynomial way.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.