用于绘制海底永久冻土的深度学习粘弹性地震反演

GEOPHYSICS Pub Date : 2024-04-22 DOI:10.1190/geo2022-0759.1
J. Bustamante, G. Fabien-Ouellet, Mathieu J. Duchesne, Amr Ibrahim
{"title":"用于绘制海底永久冻土的深度学习粘弹性地震反演","authors":"J. Bustamante, G. Fabien-Ouellet, Mathieu J. Duchesne, Amr Ibrahim","doi":"10.1190/geo2022-0759.1","DOIUrl":null,"url":null,"abstract":"Marine seismic surveys can be used to map ice-bearing subsea permafrost on a large scale. However, present seismic processing technologies have limited capacity to image permafrost distribution at depth, mainly due to the low sensitivity of primary reflections and refractions to the velocity inversion found at the base of permafrost. Guided waves and multiples are more sensitive to the velocity variations below the top of permafrost, but they remain challenging to use in physics-based inversion approaches. A deep-learning-based seismic inversion has the potential to improve seismic imaging below the top of permafrost by automatically extracting information from all wave modes. We present a multi-input neural network to estimate seismic velocities from marine seismic data. The network is trained on synthetic data generated from representative distributions of the seismic properties of subsea permafrost. We show that our network can image large velocity contrasts and reversals in depth, typical of subsea permafrost. We use our network to estimate P- and S-wave velocity and Q-factor models from a seismic line in the Beaufort Sea. The neural network indicates highly discontinuous subsea permafrost with variable thickness in the area. Our work shows that deep-learning-based seismic inversion could become a cost-effective technology to map the distribution of subsea permafrost on a large scale and, more generally, high-velocity geological layers located in shallow waters.","PeriodicalId":509604,"journal":{"name":"GEOPHYSICS","volume":"49 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning viscoelastic seismic inversion for mapping subsea permafrost\",\"authors\":\"J. Bustamante, G. Fabien-Ouellet, Mathieu J. Duchesne, Amr Ibrahim\",\"doi\":\"10.1190/geo2022-0759.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine seismic surveys can be used to map ice-bearing subsea permafrost on a large scale. However, present seismic processing technologies have limited capacity to image permafrost distribution at depth, mainly due to the low sensitivity of primary reflections and refractions to the velocity inversion found at the base of permafrost. Guided waves and multiples are more sensitive to the velocity variations below the top of permafrost, but they remain challenging to use in physics-based inversion approaches. A deep-learning-based seismic inversion has the potential to improve seismic imaging below the top of permafrost by automatically extracting information from all wave modes. We present a multi-input neural network to estimate seismic velocities from marine seismic data. The network is trained on synthetic data generated from representative distributions of the seismic properties of subsea permafrost. We show that our network can image large velocity contrasts and reversals in depth, typical of subsea permafrost. We use our network to estimate P- and S-wave velocity and Q-factor models from a seismic line in the Beaufort Sea. The neural network indicates highly discontinuous subsea permafrost with variable thickness in the area. Our work shows that deep-learning-based seismic inversion could become a cost-effective technology to map the distribution of subsea permafrost on a large scale and, more generally, high-velocity geological layers located in shallow waters.\",\"PeriodicalId\":509604,\"journal\":{\"name\":\"GEOPHYSICS\",\"volume\":\"49 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GEOPHYSICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2022-0759.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GEOPHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2022-0759.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海洋地震勘测可用于绘制大范围的含冰海底永久冻土图。然而,目前的地震处理技术对深层永久冻土分布的成像能力有限,主要原因是原初反射和折射对永久冻土底部的速度反演敏感度较低。导波和多重波对冻土层顶部以下的速度变化更为敏感,但在基于物理的反演方法中使用它们仍具有挑战性。基于深度学习的地震反演可以自动提取所有波模式的信息,从而改善冻土层顶部以下的地震成像。我们提出了一种从海洋地震数据中估算地震速度的多输入神经网络。该网络是根据海底永久冻土地震特性的代表性分布生成的合成数据进行训练的。我们的结果表明,我们的网络可以对海底永久冻土的典型特征--深度上的巨大速度对比和反转进行成像。我们使用神经网络估算了波弗特海一条地震测线的 P 波和 S 波速度以及 Q 因子模型。神经网络显示,该地区的海底永久冻土高度不连续,厚度不一。我们的工作表明,基于深度学习的地震反演可以成为一项具有成本效益的技术,用于绘制大范围的海底永久冻土分布图,以及更广泛的浅水区高速地质层分布图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-learning viscoelastic seismic inversion for mapping subsea permafrost
Marine seismic surveys can be used to map ice-bearing subsea permafrost on a large scale. However, present seismic processing technologies have limited capacity to image permafrost distribution at depth, mainly due to the low sensitivity of primary reflections and refractions to the velocity inversion found at the base of permafrost. Guided waves and multiples are more sensitive to the velocity variations below the top of permafrost, but they remain challenging to use in physics-based inversion approaches. A deep-learning-based seismic inversion has the potential to improve seismic imaging below the top of permafrost by automatically extracting information from all wave modes. We present a multi-input neural network to estimate seismic velocities from marine seismic data. The network is trained on synthetic data generated from representative distributions of the seismic properties of subsea permafrost. We show that our network can image large velocity contrasts and reversals in depth, typical of subsea permafrost. We use our network to estimate P- and S-wave velocity and Q-factor models from a seismic line in the Beaufort Sea. The neural network indicates highly discontinuous subsea permafrost with variable thickness in the area. Our work shows that deep-learning-based seismic inversion could become a cost-effective technology to map the distribution of subsea permafrost on a large scale and, more generally, high-velocity geological layers located in shallow waters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信