{"title":"E93 是两性代谢昆虫和半两性代谢昆虫繁殖不可或缺的物质。","authors":"Yu Bai, Ya-Nan Lv, Mei Zeng, Zi-Yu Yan, Dan-Yan Huang, Jia-Zhen Wen, Hu-Na Lu, Pei-Yan Zhang, Yi-Fan Wang, Ning Ban, Dong-Wei Yuan, Sheng Li, Yun-Xia Luan","doi":"10.1242/dev.202518","DOIUrl":null,"url":null,"abstract":"Ecdysone-induced protein 93 (E93), known as the \"adult-specifier\" transcription factor in insects, triggers metamorphosis in both hemimetabolous and holometabolous insects. While E93 is conserved in ametabolous insects, its spatiotemporal expression and physiological function remain poorly understood. In this study, we first discovered that in the ametabolous firebrat Thermobia domestica, the previtellogenic ovary exhibits cyclically high E93 expression, and E93 mRNAs are broadly distributed in previtellogenic ovarioles. E93 homozygous mutant females of T. domestica exhibit severe fecundity deficiency due to impaired previtellogenic development of the ovarian follicles, likely because E93 induces the expression of genes involved in ECM (extracellular matrix)-receptor interactions during previtellogenesis. Moreover, we revealed that in the hemimetabolous cockroach Blattella germanica, E93 similarly promotes previtellogenic ovarian development. In addition, E93 is also essential for vitellogenesis to guarantee ovarian maturation and promotes the vitellogenesis-previtellogenesis switch in the fat body of adult female cockroaches. Our findings deepen the understanding of the roles of E93 in controlling reproduction in insects and of E93 expression and functional evolution, which are proposed to have made crucial contributions to the origin of insect metamorphosis.","PeriodicalId":505872,"journal":{"name":"Development","volume":"68 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E93 is indispensable for reproduction in ametabolous and hemimetabolous insects.\",\"authors\":\"Yu Bai, Ya-Nan Lv, Mei Zeng, Zi-Yu Yan, Dan-Yan Huang, Jia-Zhen Wen, Hu-Na Lu, Pei-Yan Zhang, Yi-Fan Wang, Ning Ban, Dong-Wei Yuan, Sheng Li, Yun-Xia Luan\",\"doi\":\"10.1242/dev.202518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ecdysone-induced protein 93 (E93), known as the \\\"adult-specifier\\\" transcription factor in insects, triggers metamorphosis in both hemimetabolous and holometabolous insects. While E93 is conserved in ametabolous insects, its spatiotemporal expression and physiological function remain poorly understood. In this study, we first discovered that in the ametabolous firebrat Thermobia domestica, the previtellogenic ovary exhibits cyclically high E93 expression, and E93 mRNAs are broadly distributed in previtellogenic ovarioles. E93 homozygous mutant females of T. domestica exhibit severe fecundity deficiency due to impaired previtellogenic development of the ovarian follicles, likely because E93 induces the expression of genes involved in ECM (extracellular matrix)-receptor interactions during previtellogenesis. Moreover, we revealed that in the hemimetabolous cockroach Blattella germanica, E93 similarly promotes previtellogenic ovarian development. In addition, E93 is also essential for vitellogenesis to guarantee ovarian maturation and promotes the vitellogenesis-previtellogenesis switch in the fat body of adult female cockroaches. Our findings deepen the understanding of the roles of E93 in controlling reproduction in insects and of E93 expression and functional evolution, which are proposed to have made crucial contributions to the origin of insect metamorphosis.\",\"PeriodicalId\":505872,\"journal\":{\"name\":\"Development\",\"volume\":\"68 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.202518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1242/dev.202518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
E93 is indispensable for reproduction in ametabolous and hemimetabolous insects.
Ecdysone-induced protein 93 (E93), known as the "adult-specifier" transcription factor in insects, triggers metamorphosis in both hemimetabolous and holometabolous insects. While E93 is conserved in ametabolous insects, its spatiotemporal expression and physiological function remain poorly understood. In this study, we first discovered that in the ametabolous firebrat Thermobia domestica, the previtellogenic ovary exhibits cyclically high E93 expression, and E93 mRNAs are broadly distributed in previtellogenic ovarioles. E93 homozygous mutant females of T. domestica exhibit severe fecundity deficiency due to impaired previtellogenic development of the ovarian follicles, likely because E93 induces the expression of genes involved in ECM (extracellular matrix)-receptor interactions during previtellogenesis. Moreover, we revealed that in the hemimetabolous cockroach Blattella germanica, E93 similarly promotes previtellogenic ovarian development. In addition, E93 is also essential for vitellogenesis to guarantee ovarian maturation and promotes the vitellogenesis-previtellogenesis switch in the fat body of adult female cockroaches. Our findings deepen the understanding of the roles of E93 in controlling reproduction in insects and of E93 expression and functional evolution, which are proposed to have made crucial contributions to the origin of insect metamorphosis.