BELUGA 中的更多 Church-Rosser 证明

Q4 Computer Science
Alberto Momigliano, Martina Sassella
{"title":"BELUGA 中的更多 Church-Rosser 证明","authors":"Alberto Momigliano, Martina Sassella","doi":"10.4204/EPTCS.402.6","DOIUrl":null,"url":null,"abstract":"We report on yet another formalization of the Church-Rosser property in lambda-calculi, carried out with the proof environment Beluga. After the well-known proofs of confluence for beta-reduction in the untyped settings, with and without Takahashi's complete developments method, we concentrate on eta-reduction and obtain the result for beta-eta modularly. We further extend the analysis to typed-calculi, in particular System F. Finally, we investigate the idea of pursuing the encoding directly in Beluga's meta-logic, as well as the use of Beluga's logic programming engine to search for counterexamples.","PeriodicalId":30085,"journal":{"name":"Electronic Proceedings in Theoretical Computer Science","volume":"60 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More Church-Rosser Proofs in BELUGA\",\"authors\":\"Alberto Momigliano, Martina Sassella\",\"doi\":\"10.4204/EPTCS.402.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on yet another formalization of the Church-Rosser property in lambda-calculi, carried out with the proof environment Beluga. After the well-known proofs of confluence for beta-reduction in the untyped settings, with and without Takahashi's complete developments method, we concentrate on eta-reduction and obtain the result for beta-eta modularly. We further extend the analysis to typed-calculi, in particular System F. Finally, we investigate the idea of pursuing the encoding directly in Beluga's meta-logic, as well as the use of Beluga's logic programming engine to search for counterexamples.\",\"PeriodicalId\":30085,\"journal\":{\"name\":\"Electronic Proceedings in Theoretical Computer Science\",\"volume\":\"60 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Proceedings in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.402.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Proceedings in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.402.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

我们用证明环境 Beluga 报告了 lambda 计算中 Church-Rosser 属性的另一种形式化。在使用或不使用高桥的完整发展方法,对非类型环境中的贝塔还原进行了众所周知的汇合证明之后,我们将注意力集中在等式还原上,并模块化地获得了贝塔-埃塔的结果。最后,我们研究了直接在白鲸元逻辑中追求编码的想法,以及使用白鲸逻辑编程引擎搜索反例的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More Church-Rosser Proofs in BELUGA
We report on yet another formalization of the Church-Rosser property in lambda-calculi, carried out with the proof environment Beluga. After the well-known proofs of confluence for beta-reduction in the untyped settings, with and without Takahashi's complete developments method, we concentrate on eta-reduction and obtain the result for beta-eta modularly. We further extend the analysis to typed-calculi, in particular System F. Finally, we investigate the idea of pursuing the encoding directly in Beluga's meta-logic, as well as the use of Beluga's logic programming engine to search for counterexamples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
295
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信