{"title":"BELUGA 中的更多 Church-Rosser 证明","authors":"Alberto Momigliano, Martina Sassella","doi":"10.4204/EPTCS.402.6","DOIUrl":null,"url":null,"abstract":"We report on yet another formalization of the Church-Rosser property in lambda-calculi, carried out with the proof environment Beluga. After the well-known proofs of confluence for beta-reduction in the untyped settings, with and without Takahashi's complete developments method, we concentrate on eta-reduction and obtain the result for beta-eta modularly. We further extend the analysis to typed-calculi, in particular System F. Finally, we investigate the idea of pursuing the encoding directly in Beluga's meta-logic, as well as the use of Beluga's logic programming engine to search for counterexamples.","PeriodicalId":30085,"journal":{"name":"Electronic Proceedings in Theoretical Computer Science","volume":"60 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More Church-Rosser Proofs in BELUGA\",\"authors\":\"Alberto Momigliano, Martina Sassella\",\"doi\":\"10.4204/EPTCS.402.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on yet another formalization of the Church-Rosser property in lambda-calculi, carried out with the proof environment Beluga. After the well-known proofs of confluence for beta-reduction in the untyped settings, with and without Takahashi's complete developments method, we concentrate on eta-reduction and obtain the result for beta-eta modularly. We further extend the analysis to typed-calculi, in particular System F. Finally, we investigate the idea of pursuing the encoding directly in Beluga's meta-logic, as well as the use of Beluga's logic programming engine to search for counterexamples.\",\"PeriodicalId\":30085,\"journal\":{\"name\":\"Electronic Proceedings in Theoretical Computer Science\",\"volume\":\"60 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Proceedings in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.402.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Proceedings in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.402.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
We report on yet another formalization of the Church-Rosser property in lambda-calculi, carried out with the proof environment Beluga. After the well-known proofs of confluence for beta-reduction in the untyped settings, with and without Takahashi's complete developments method, we concentrate on eta-reduction and obtain the result for beta-eta modularly. We further extend the analysis to typed-calculi, in particular System F. Finally, we investigate the idea of pursuing the encoding directly in Beluga's meta-logic, as well as the use of Beluga's logic programming engine to search for counterexamples.