Ingo Steinbach, M. Uddagiri, Hesham Salama, Muhammad Adil Ali, O. Shchyglo
{"title":"通过相场模拟了解高度复杂的材料过程:增材制造、钢中的贝氏体转变和超合金的高温蠕变","authors":"Ingo Steinbach, M. Uddagiri, Hesham Salama, Muhammad Adil Ali, O. Shchyglo","doi":"10.1557/s43577-024-00703-y","DOIUrl":null,"url":null,"abstract":"\n \n Recent breakthroughs resolving open questions in materials science by phase-field simulations are reported. They relate to solidification structure formation in additive manufacturing, carbon redistribution during bainitic transformation, and the onset of damage during high-temperature creep of superalloys. The first example deals with the balance between epitaxial growth and nucleation in solidification. The second relates to the controversy regarding diffusion control and dominance of massive transformation in bainite transformation. The third relates to directional coarsening (rafting) in superalloys as a diffusion-controlled phase transformation: loss of coherency of precipitates marks the onset of damage associated with rotation of the crystal lattice and topological inversion. Technical details of the phase-field method are reviewed as necessary, and limitations of the approach are discussed.\n \n \n \n","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly complex materials processes as understood by phase-field simulations: Additive manufacturing, bainitic transformation in steel and high-temperature creep of superalloys\",\"authors\":\"Ingo Steinbach, M. Uddagiri, Hesham Salama, Muhammad Adil Ali, O. Shchyglo\",\"doi\":\"10.1557/s43577-024-00703-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Recent breakthroughs resolving open questions in materials science by phase-field simulations are reported. They relate to solidification structure formation in additive manufacturing, carbon redistribution during bainitic transformation, and the onset of damage during high-temperature creep of superalloys. The first example deals with the balance between epitaxial growth and nucleation in solidification. The second relates to the controversy regarding diffusion control and dominance of massive transformation in bainite transformation. The third relates to directional coarsening (rafting) in superalloys as a diffusion-controlled phase transformation: loss of coherency of precipitates marks the onset of damage associated with rotation of the crystal lattice and topological inversion. Technical details of the phase-field method are reviewed as necessary, and limitations of the approach are discussed.\\n \\n \\n \\n\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-024-00703-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00703-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly complex materials processes as understood by phase-field simulations: Additive manufacturing, bainitic transformation in steel and high-temperature creep of superalloys
Recent breakthroughs resolving open questions in materials science by phase-field simulations are reported. They relate to solidification structure formation in additive manufacturing, carbon redistribution during bainitic transformation, and the onset of damage during high-temperature creep of superalloys. The first example deals with the balance between epitaxial growth and nucleation in solidification. The second relates to the controversy regarding diffusion control and dominance of massive transformation in bainite transformation. The third relates to directional coarsening (rafting) in superalloys as a diffusion-controlled phase transformation: loss of coherency of precipitates marks the onset of damage associated with rotation of the crystal lattice and topological inversion. Technical details of the phase-field method are reviewed as necessary, and limitations of the approach are discussed.
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.