{"title":"决策树与相关分析算法在大学生体质分析中的应用研究","authors":"Jingang Fan, Yan Yang, Jiabao Liu","doi":"10.1142/s0129156424400196","DOIUrl":null,"url":null,"abstract":"With the advent of the big data era, data-driven decision-making and analysis are increasingly valued in various fields. Especially in the field of education, how to use big data technology to better understand student needs, optimize the education process, and improve education quality has become an important research topic. This paper will explore the application of decision trees and related analysis algorithms in the analysis of college students’ physical fitness, in order to provide scientific basis for improving the physical health level of college students. This paper studies the application of DT (decision tree) and correlation analysis algorithm in the analysis of college students’ physical fitness. In this paper, the method of big data and DM (data mining) is proposed to extract the rules contained in the data information, so as to directly provide auxiliary decision-making for physical fitness test and analysis. The research results show that through training the training set, a good classification accuracy rate is achieved, and through optimizing the depth, the accuracy rate can reach more than 85.033%. Using DM technology as a carrier, this paper digs into the rules behind the new knowledge of college students’ physical fitness, and digs out the previously unknown, implied and potentially useful information and knowledge.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Application of Decision Tree and Correlation Analysis Algorithm in College Students’ Physical Fitness Analysis\",\"authors\":\"Jingang Fan, Yan Yang, Jiabao Liu\",\"doi\":\"10.1142/s0129156424400196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of the big data era, data-driven decision-making and analysis are increasingly valued in various fields. Especially in the field of education, how to use big data technology to better understand student needs, optimize the education process, and improve education quality has become an important research topic. This paper will explore the application of decision trees and related analysis algorithms in the analysis of college students’ physical fitness, in order to provide scientific basis for improving the physical health level of college students. This paper studies the application of DT (decision tree) and correlation analysis algorithm in the analysis of college students’ physical fitness. In this paper, the method of big data and DM (data mining) is proposed to extract the rules contained in the data information, so as to directly provide auxiliary decision-making for physical fitness test and analysis. The research results show that through training the training set, a good classification accuracy rate is achieved, and through optimizing the depth, the accuracy rate can reach more than 85.033%. Using DM technology as a carrier, this paper digs into the rules behind the new knowledge of college students’ physical fitness, and digs out the previously unknown, implied and potentially useful information and knowledge.\",\"PeriodicalId\":35778,\"journal\":{\"name\":\"International Journal of High Speed Electronics and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Speed Electronics and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129156424400196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156424400196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Research on the Application of Decision Tree and Correlation Analysis Algorithm in College Students’ Physical Fitness Analysis
With the advent of the big data era, data-driven decision-making and analysis are increasingly valued in various fields. Especially in the field of education, how to use big data technology to better understand student needs, optimize the education process, and improve education quality has become an important research topic. This paper will explore the application of decision trees and related analysis algorithms in the analysis of college students’ physical fitness, in order to provide scientific basis for improving the physical health level of college students. This paper studies the application of DT (decision tree) and correlation analysis algorithm in the analysis of college students’ physical fitness. In this paper, the method of big data and DM (data mining) is proposed to extract the rules contained in the data information, so as to directly provide auxiliary decision-making for physical fitness test and analysis. The research results show that through training the training set, a good classification accuracy rate is achieved, and through optimizing the depth, the accuracy rate can reach more than 85.033%. Using DM technology as a carrier, this paper digs into the rules behind the new knowledge of college students’ physical fitness, and digs out the previously unknown, implied and potentially useful information and knowledge.
期刊介绍:
Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.