磁粉成像在诊断和治疗中的应用进展

Q2 Engineering
Karthick Harini, K. Girigoswami, P. Pallavi, Pemula Gowtham, Alex Daniel Prabhu, A. Girigoswami
{"title":"磁粉成像在诊断和治疗中的应用进展","authors":"Karthick Harini, K. Girigoswami, P. Pallavi, Pemula Gowtham, Alex Daniel Prabhu, A. Girigoswami","doi":"10.1088/2043-6262/ad3b7a","DOIUrl":null,"url":null,"abstract":"\n Magnetic particle imaging (MPI) has gained significant traction as an ionising radiation-free tomographic method that offers real-time imaging capabilities with enhanced sensitivity and resolutions. In this technique, magnetic nanoparticles (MNPs) are employed, particularly iron oxide nanoparticles with superparamagnetic nature, as probes within the MPI system. These MNPs enable the tracking and precise quantification of particle movement with minimal background noise. The 3D location and concentration of MNPs can provide better insights for multiple applications in vascular imaging, cell tracking, cancer cell imaging, inflammation, implant monitoring, and trauma imaging and can thus accelerate the diagnosis of disorders. The mononuclear phagocyte system provides a significant advantage, as they are involved in the spontaneous clearance of the tracers used in MPI, which readily minimise the toxic effects. Several studies have demonstrated that MPI-based functional neuroimaging is superior to other imaging modalities, providing adequate temporal resolution images with quick scan intervals. In MPI, nanoparticles are solely responsible for the source and visualisation, unlike magnetic resonance imaging (MRI), where nanoparticles were used only as supportive tracers. This review provides an overview of the principle, diagnostic, and therapeutic applications of MPI as well as the advantages and challenges MPI has over other diagnostic imaging methods in modern clinical setups.","PeriodicalId":56371,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":"23 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancement of magnetic particle imaging in diagnosis and therapy\",\"authors\":\"Karthick Harini, K. Girigoswami, P. Pallavi, Pemula Gowtham, Alex Daniel Prabhu, A. Girigoswami\",\"doi\":\"10.1088/2043-6262/ad3b7a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Magnetic particle imaging (MPI) has gained significant traction as an ionising radiation-free tomographic method that offers real-time imaging capabilities with enhanced sensitivity and resolutions. In this technique, magnetic nanoparticles (MNPs) are employed, particularly iron oxide nanoparticles with superparamagnetic nature, as probes within the MPI system. These MNPs enable the tracking and precise quantification of particle movement with minimal background noise. The 3D location and concentration of MNPs can provide better insights for multiple applications in vascular imaging, cell tracking, cancer cell imaging, inflammation, implant monitoring, and trauma imaging and can thus accelerate the diagnosis of disorders. The mononuclear phagocyte system provides a significant advantage, as they are involved in the spontaneous clearance of the tracers used in MPI, which readily minimise the toxic effects. Several studies have demonstrated that MPI-based functional neuroimaging is superior to other imaging modalities, providing adequate temporal resolution images with quick scan intervals. In MPI, nanoparticles are solely responsible for the source and visualisation, unlike magnetic resonance imaging (MRI), where nanoparticles were used only as supportive tracers. This review provides an overview of the principle, diagnostic, and therapeutic applications of MPI as well as the advantages and challenges MPI has over other diagnostic imaging methods in modern clinical setups.\",\"PeriodicalId\":56371,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":\"23 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/ad3b7a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ad3b7a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

磁粉成像(MPI)作为一种无电离辐射的断层成像方法,具有实时成像能力、更高的灵敏度和分辨率,已获得了广泛的关注。在这项技术中,磁性纳米粒子(MNPs),特别是具有超顺磁性的氧化铁纳米粒子,被用作 MPI 系统中的探针。这些 MNPs 可以在背景噪声最小的情况下跟踪和精确量化粒子的运动。MNPs 的三维位置和浓度可为血管成像、细胞追踪、癌细胞成像、炎症、植入监测和创伤成像等多种应用提供更好的见解,从而加快疾病的诊断。单核吞噬细胞系统具有明显的优势,因为它们参与了 MPI 中所用示踪剂的自发清除,可随时将毒性效应降至最低。多项研究表明,基于 MPI 的功能性神经成像优于其他成像模式,可提供足够的时间分辨率图像,扫描间隔时间短。与磁共振成像(MRI)不同的是,在 MPI 中,纳米粒子只负责信号源和可视化,而磁共振成像(MRI)则只将纳米粒子用作辅助示踪剂。本综述概述了 MPI 的原理、诊断和治疗应用,以及在现代临床设备中 MPI 与其他诊断成像方法相比所具有的优势和面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancement of magnetic particle imaging in diagnosis and therapy
Magnetic particle imaging (MPI) has gained significant traction as an ionising radiation-free tomographic method that offers real-time imaging capabilities with enhanced sensitivity and resolutions. In this technique, magnetic nanoparticles (MNPs) are employed, particularly iron oxide nanoparticles with superparamagnetic nature, as probes within the MPI system. These MNPs enable the tracking and precise quantification of particle movement with minimal background noise. The 3D location and concentration of MNPs can provide better insights for multiple applications in vascular imaging, cell tracking, cancer cell imaging, inflammation, implant monitoring, and trauma imaging and can thus accelerate the diagnosis of disorders. The mononuclear phagocyte system provides a significant advantage, as they are involved in the spontaneous clearance of the tracers used in MPI, which readily minimise the toxic effects. Several studies have demonstrated that MPI-based functional neuroimaging is superior to other imaging modalities, providing adequate temporal resolution images with quick scan intervals. In MPI, nanoparticles are solely responsible for the source and visualisation, unlike magnetic resonance imaging (MRI), where nanoparticles were used only as supportive tracers. This review provides an overview of the principle, diagnostic, and therapeutic applications of MPI as well as the advantages and challenges MPI has over other diagnostic imaging methods in modern clinical setups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Natural Sciences: Nanoscience and Nanotechnology
Advances in Natural Sciences: Nanoscience and Nanotechnology Engineering-Industrial and Manufacturing Engineering
CiteScore
3.80
自引率
0.00%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信