AP 分布对 HMX/AP/Al 炸药能量释放特性和作用力的影响

IF 1.7 4区 工程技术 Q3 CHEMISTRY, APPLIED
Han Gao, Wen Pan, Xiao-Jun Feng
{"title":"AP 分布对 HMX/AP/Al 炸药能量释放特性和作用力的影响","authors":"Han Gao, Wen Pan, Xiao-Jun Feng","doi":"10.1002/prep.202300263","DOIUrl":null,"url":null,"abstract":"In order to understand the reaction kinetics of HMX/AP/Al ternary system, the different distribution of AP in HMX/AP/Al explosives was realized by two different preparation techniques. Detonation test results show that the detonation velocity, explosion heat and detonation pressure of HAP samples are higher than those of HAl samples, but the extent of improvement is not high, not more than 5 %. The results of scanning electron microscopy showed that AP in HAP samples was distributed on the surface of HMX crystal. AP were dispersed around HMX crystals in HAl samples. The experimental results of explosive fireball performance show that the fireball expansion speed of HAP samples is better than that of HAl samples, demonstrating a good fireball effect. Underwater test results show that the shock wave peak pressure and bubble pulsation period of HAP samples increase by 3.06 % and 7.95 % respectively, and shock wave energy and bubble energy increase by 9.8 % and 25.42 % compared with bubble energy. The experimental results show that HAP samples are superior to HAl samples in accelerating ability of Al flies. The dispersion of AP on the HMX crystal surface promotes the energy release of HMX/AP/Al explosives more.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of AP distribution on energy release characteristics and functional force of HMX/AP/Al explosives\",\"authors\":\"Han Gao, Wen Pan, Xiao-Jun Feng\",\"doi\":\"10.1002/prep.202300263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to understand the reaction kinetics of HMX/AP/Al ternary system, the different distribution of AP in HMX/AP/Al explosives was realized by two different preparation techniques. Detonation test results show that the detonation velocity, explosion heat and detonation pressure of HAP samples are higher than those of HAl samples, but the extent of improvement is not high, not more than 5 %. The results of scanning electron microscopy showed that AP in HAP samples was distributed on the surface of HMX crystal. AP were dispersed around HMX crystals in HAl samples. The experimental results of explosive fireball performance show that the fireball expansion speed of HAP samples is better than that of HAl samples, demonstrating a good fireball effect. Underwater test results show that the shock wave peak pressure and bubble pulsation period of HAP samples increase by 3.06 % and 7.95 % respectively, and shock wave energy and bubble energy increase by 9.8 % and 25.42 % compared with bubble energy. The experimental results show that HAP samples are superior to HAl samples in accelerating ability of Al flies. The dispersion of AP on the HMX crystal surface promotes the energy release of HMX/AP/Al explosives more.\",\"PeriodicalId\":20800,\"journal\":{\"name\":\"Propellants, Explosives, Pyrotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propellants, Explosives, Pyrotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prep.202300263\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300263","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

为了了解HMX/AP/Al三元体系的反应动力学,通过两种不同的制备技术实现了AP在HMX/AP/Al炸药中的不同分布。爆轰试验结果表明,HAP 样品的爆速、爆轰热和爆轰压力均高于 HAl 样品,但提高幅度不大,不超过 5%。扫描电子显微镜结果表明,HAP 样品中的 AP 分布在 HMX 晶体表面。在 HAl 样品中,AP 分散在 HMX 晶体周围。爆炸火球性能实验结果表明,HAP 样品的火球膨胀速度优于 HAl 样品,显示出良好的火球效果。水下测试结果表明,HAP 样品的冲击波峰值压力和气泡脉动周期分别增加了 3.06 % 和 7.95 %,冲击波能量和气泡能量与气泡能量相比分别增加了 9.8 % 和 25.42 %。实验结果表明,HAP 样品对铝蝇的加速能力优于 HAl 样品。AP 在 HMX 晶体表面的分散更能促进 HMX/AP/Al 炸药的能量释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of AP distribution on energy release characteristics and functional force of HMX/AP/Al explosives
In order to understand the reaction kinetics of HMX/AP/Al ternary system, the different distribution of AP in HMX/AP/Al explosives was realized by two different preparation techniques. Detonation test results show that the detonation velocity, explosion heat and detonation pressure of HAP samples are higher than those of HAl samples, but the extent of improvement is not high, not more than 5 %. The results of scanning electron microscopy showed that AP in HAP samples was distributed on the surface of HMX crystal. AP were dispersed around HMX crystals in HAl samples. The experimental results of explosive fireball performance show that the fireball expansion speed of HAP samples is better than that of HAl samples, demonstrating a good fireball effect. Underwater test results show that the shock wave peak pressure and bubble pulsation period of HAP samples increase by 3.06 % and 7.95 % respectively, and shock wave energy and bubble energy increase by 9.8 % and 25.42 % compared with bubble energy. The experimental results show that HAP samples are superior to HAl samples in accelerating ability of Al flies. The dispersion of AP on the HMX crystal surface promotes the energy release of HMX/AP/Al explosives more.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Propellants, Explosives, Pyrotechnics
Propellants, Explosives, Pyrotechnics 工程技术-工程:化工
CiteScore
4.20
自引率
16.70%
发文量
235
审稿时长
2.7 months
期刊介绍: Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year. PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信