{"title":"从模式到风格:反思异构人脸识别中的领域差距","authors":"Anjith George;Sébastien Marcel","doi":"10.1109/TBIOM.2024.3365350","DOIUrl":null,"url":null,"abstract":"Heterogeneous Face Recognition (HFR) focuses on matching faces from different domains, for instance, thermal to visible images, making Face Recognition (FR) systems more versatile for challenging scenarios. However, the domain gap between these domains and the limited large-scale datasets in the target HFR modalities make it challenging to develop robust HFR models from scratch. In our work, we view different modalities as distinct styles and propose a method to modulate feature maps of the target modality to address the domain gap. We present a new Conditional Adaptive Instance Modulation (CAIM) module that seamlessly fits into existing FR networks, turning them into HFR-ready systems. The CAIM block modulates intermediate feature maps, efficiently adapting to the style of the source modality and bridging the domain gap. Our method enables end-to-end training using a small set of paired samples. We extensively evaluate the proposed approach on various challenging HFR benchmarks, showing that it outperforms state-of-the-art methods. The source code and protocols for reproducing the findings will be made publicly available.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 4","pages":"475-485"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Modalities to Styles: Rethinking the Domain Gap in Heterogeneous Face Recognition\",\"authors\":\"Anjith George;Sébastien Marcel\",\"doi\":\"10.1109/TBIOM.2024.3365350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous Face Recognition (HFR) focuses on matching faces from different domains, for instance, thermal to visible images, making Face Recognition (FR) systems more versatile for challenging scenarios. However, the domain gap between these domains and the limited large-scale datasets in the target HFR modalities make it challenging to develop robust HFR models from scratch. In our work, we view different modalities as distinct styles and propose a method to modulate feature maps of the target modality to address the domain gap. We present a new Conditional Adaptive Instance Modulation (CAIM) module that seamlessly fits into existing FR networks, turning them into HFR-ready systems. The CAIM block modulates intermediate feature maps, efficiently adapting to the style of the source modality and bridging the domain gap. Our method enables end-to-end training using a small set of paired samples. We extensively evaluate the proposed approach on various challenging HFR benchmarks, showing that it outperforms state-of-the-art methods. The source code and protocols for reproducing the findings will be made publicly available.\",\"PeriodicalId\":73307,\"journal\":{\"name\":\"IEEE transactions on biometrics, behavior, and identity science\",\"volume\":\"6 4\",\"pages\":\"475-485\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biometrics, behavior, and identity science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10433849/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10433849/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Modalities to Styles: Rethinking the Domain Gap in Heterogeneous Face Recognition
Heterogeneous Face Recognition (HFR) focuses on matching faces from different domains, for instance, thermal to visible images, making Face Recognition (FR) systems more versatile for challenging scenarios. However, the domain gap between these domains and the limited large-scale datasets in the target HFR modalities make it challenging to develop robust HFR models from scratch. In our work, we view different modalities as distinct styles and propose a method to modulate feature maps of the target modality to address the domain gap. We present a new Conditional Adaptive Instance Modulation (CAIM) module that seamlessly fits into existing FR networks, turning them into HFR-ready systems. The CAIM block modulates intermediate feature maps, efficiently adapting to the style of the source modality and bridging the domain gap. Our method enables end-to-end training using a small set of paired samples. We extensively evaluate the proposed approach on various challenging HFR benchmarks, showing that it outperforms state-of-the-art methods. The source code and protocols for reproducing the findings will be made publicly available.