Md Khurram Monir Rabby, M. Khan, Steven Xiaochun Jiang, A. Karimoddini
{"title":"在人与多机器人协作环境中建立性能感知信任模型","authors":"Md Khurram Monir Rabby, M. Khan, Steven Xiaochun Jiang, A. Karimoddini","doi":"10.1145/3660648","DOIUrl":null,"url":null,"abstract":"In this study, a novel time-driven mathematical model for trust is developed considering human-multi-robot performance for a Human-robot Collaboration (HRC) framework. For this purpose, a model is developed to quantify human performance considering the effects of physical and cognitive constraints and factors such as muscle fatigue and recovery, muscle isometric force, human (cognitive and physical) workload and workloads due to the robots’ mistakes, and task complexity. The performance of multi-robot in the HRC setting is modeled based upon the rate of task assignment and completion as well as the mistake probabilities of the individual robots. The human trust in HRC setting with single and multiple robots are modeled over different operation regions, namely unpredictable region, predictable region, dependable region, and faithful region. The relative performance difference between the human operator and the robot is used to analyze the effect on the human operator’s trust in robots’ operation. The developed model is simulated for a manufacturing workspace scenario considering different task complexities and involving multiple robots to complete shared tasks. The simulation results indicate that for a constant multi-robot performance in operation, the human operator’s trust in robots’ operation improves whenever the comparative performance of the robots improves with respect to the human operator performance. The impact of robot hypothetical learning capabilities on human trust in the same HRC setting is also analyzed. The results confirm that a hypothetical learning capability allows robots to reduce human workloads, which improves human performance. The simulation result analysis confirms that the human operator’s trust in the multi-robot operation increases faster with the improvement of the multi-robot performance when the robots have a hypothetical learning capability. An empirical study was conducted involving a human operator and two collaborator robots with two different performance levels in a software-based HRC setting. The experimental results closely followed the pattern of the developed mathematical models when capturing human trust and performance in terms of human-multi-robot collaboration.","PeriodicalId":504644,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":"19 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance-Aware Trust Modeling Within a Human-Multi-Robot Collaboration Setting\",\"authors\":\"Md Khurram Monir Rabby, M. Khan, Steven Xiaochun Jiang, A. Karimoddini\",\"doi\":\"10.1145/3660648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a novel time-driven mathematical model for trust is developed considering human-multi-robot performance for a Human-robot Collaboration (HRC) framework. For this purpose, a model is developed to quantify human performance considering the effects of physical and cognitive constraints and factors such as muscle fatigue and recovery, muscle isometric force, human (cognitive and physical) workload and workloads due to the robots’ mistakes, and task complexity. The performance of multi-robot in the HRC setting is modeled based upon the rate of task assignment and completion as well as the mistake probabilities of the individual robots. The human trust in HRC setting with single and multiple robots are modeled over different operation regions, namely unpredictable region, predictable region, dependable region, and faithful region. The relative performance difference between the human operator and the robot is used to analyze the effect on the human operator’s trust in robots’ operation. The developed model is simulated for a manufacturing workspace scenario considering different task complexities and involving multiple robots to complete shared tasks. The simulation results indicate that for a constant multi-robot performance in operation, the human operator’s trust in robots’ operation improves whenever the comparative performance of the robots improves with respect to the human operator performance. The impact of robot hypothetical learning capabilities on human trust in the same HRC setting is also analyzed. The results confirm that a hypothetical learning capability allows robots to reduce human workloads, which improves human performance. The simulation result analysis confirms that the human operator’s trust in the multi-robot operation increases faster with the improvement of the multi-robot performance when the robots have a hypothetical learning capability. An empirical study was conducted involving a human operator and two collaborator robots with two different performance levels in a software-based HRC setting. The experimental results closely followed the pattern of the developed mathematical models when capturing human trust and performance in terms of human-multi-robot collaboration.\",\"PeriodicalId\":504644,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3660648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3660648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance-Aware Trust Modeling Within a Human-Multi-Robot Collaboration Setting
In this study, a novel time-driven mathematical model for trust is developed considering human-multi-robot performance for a Human-robot Collaboration (HRC) framework. For this purpose, a model is developed to quantify human performance considering the effects of physical and cognitive constraints and factors such as muscle fatigue and recovery, muscle isometric force, human (cognitive and physical) workload and workloads due to the robots’ mistakes, and task complexity. The performance of multi-robot in the HRC setting is modeled based upon the rate of task assignment and completion as well as the mistake probabilities of the individual robots. The human trust in HRC setting with single and multiple robots are modeled over different operation regions, namely unpredictable region, predictable region, dependable region, and faithful region. The relative performance difference between the human operator and the robot is used to analyze the effect on the human operator’s trust in robots’ operation. The developed model is simulated for a manufacturing workspace scenario considering different task complexities and involving multiple robots to complete shared tasks. The simulation results indicate that for a constant multi-robot performance in operation, the human operator’s trust in robots’ operation improves whenever the comparative performance of the robots improves with respect to the human operator performance. The impact of robot hypothetical learning capabilities on human trust in the same HRC setting is also analyzed. The results confirm that a hypothetical learning capability allows robots to reduce human workloads, which improves human performance. The simulation result analysis confirms that the human operator’s trust in the multi-robot operation increases faster with the improvement of the multi-robot performance when the robots have a hypothetical learning capability. An empirical study was conducted involving a human operator and two collaborator robots with two different performance levels in a software-based HRC setting. The experimental results closely followed the pattern of the developed mathematical models when capturing human trust and performance in terms of human-multi-robot collaboration.