Iqra Khalil, Kanza Noor, Farhan Qamar, Romana Shahzadi
{"title":"将 OFC 和 FSO 结合起来实现多通道连接的混合方法","authors":"Iqra Khalil, Kanza Noor, Farhan Qamar, Romana Shahzadi","doi":"10.1515/joc-2024-0042","DOIUrl":null,"url":null,"abstract":"\n This paper presents a novel approach of establishing a multichannel optical communication link, combining optical fiber cable (OFC) and free space optics (FSO) technology. By leveraging multiple lengths of optical fiber and FSO links, along with optical amplifiers to counteract attenuation, our proposed hybrid system incorporates four channels operating within the 1550 nm window. This model is specifically designed to address communication challenges in scenarios such as unplanned urban layouts, multistory buildings, or rugged terrains where traditional optical fiber deployment is impractical. By integrating FSO for the fronthaul and optical fiber for the backhaul, our system enhances transmission capacity, thereby supporting the requirements of next-generation networks and alleviating bottlenecks and connectivity issues at the last or first mile. This innovative approach holds promise for internet service providers, enterprises, and industrial networks operating in demanding environments. Furthermore, it can serve as a vital tool for restoring emergency communication links in the aftermath of disasters such as earthquakes or floods, where traditional wired optical infrastructure may be compromised.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid approach combining OFC and FSO for multichannel connectivity\",\"authors\":\"Iqra Khalil, Kanza Noor, Farhan Qamar, Romana Shahzadi\",\"doi\":\"10.1515/joc-2024-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a novel approach of establishing a multichannel optical communication link, combining optical fiber cable (OFC) and free space optics (FSO) technology. By leveraging multiple lengths of optical fiber and FSO links, along with optical amplifiers to counteract attenuation, our proposed hybrid system incorporates four channels operating within the 1550 nm window. This model is specifically designed to address communication challenges in scenarios such as unplanned urban layouts, multistory buildings, or rugged terrains where traditional optical fiber deployment is impractical. By integrating FSO for the fronthaul and optical fiber for the backhaul, our system enhances transmission capacity, thereby supporting the requirements of next-generation networks and alleviating bottlenecks and connectivity issues at the last or first mile. This innovative approach holds promise for internet service providers, enterprises, and industrial networks operating in demanding environments. Furthermore, it can serve as a vital tool for restoring emergency communication links in the aftermath of disasters such as earthquakes or floods, where traditional wired optical infrastructure may be compromised.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2024-0042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2024-0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A hybrid approach combining OFC and FSO for multichannel connectivity
This paper presents a novel approach of establishing a multichannel optical communication link, combining optical fiber cable (OFC) and free space optics (FSO) technology. By leveraging multiple lengths of optical fiber and FSO links, along with optical amplifiers to counteract attenuation, our proposed hybrid system incorporates four channels operating within the 1550 nm window. This model is specifically designed to address communication challenges in scenarios such as unplanned urban layouts, multistory buildings, or rugged terrains where traditional optical fiber deployment is impractical. By integrating FSO for the fronthaul and optical fiber for the backhaul, our system enhances transmission capacity, thereby supporting the requirements of next-generation networks and alleviating bottlenecks and connectivity issues at the last or first mile. This innovative approach holds promise for internet service providers, enterprises, and industrial networks operating in demanding environments. Furthermore, it can serve as a vital tool for restoring emergency communication links in the aftermath of disasters such as earthquakes or floods, where traditional wired optical infrastructure may be compromised.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications