等半径球覆盖旋转曲面的数值算法

Dyk Min Nguyen
{"title":"等半径球覆盖旋转曲面的数值算法","authors":"Dyk Min Nguyen","doi":"10.36629/2686-9896-2024-1-156-158","DOIUrl":null,"url":null,"abstract":"The paper focuses on the problem of constructing the thinnest covering for surfaces of revolution by equal balls whose radii are unknown in advance. A heuristic algorithm based on the joint applying the optical-geometric approach and the geodesic Voronoi diagram is proposed. Calculations for some surfaces of revolution, including a sphere, are carried out","PeriodicalId":118758,"journal":{"name":"Modern Technologies and Scientific and Technological Progress","volume":"11 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL ALGORITHM FOR COVERING SURFACES OF REVOLUTION BY BALLS WITH EQUAL RADII\",\"authors\":\"Dyk Min Nguyen\",\"doi\":\"10.36629/2686-9896-2024-1-156-158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper focuses on the problem of constructing the thinnest covering for surfaces of revolution by equal balls whose radii are unknown in advance. A heuristic algorithm based on the joint applying the optical-geometric approach and the geodesic Voronoi diagram is proposed. Calculations for some surfaces of revolution, including a sphere, are carried out\",\"PeriodicalId\":118758,\"journal\":{\"name\":\"Modern Technologies and Scientific and Technological Progress\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Technologies and Scientific and Technological Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36629/2686-9896-2024-1-156-158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Technologies and Scientific and Technological Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36629/2686-9896-2024-1-156-158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文重点讨论了如何为半径未知的等球旋转曲面构建最薄覆盖层的问题。本文提出了一种基于光学几何方法和大地 Voronoi 图联合应用的启发式算法。对包括球体在内的一些旋转表面进行了计算
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMERICAL ALGORITHM FOR COVERING SURFACES OF REVOLUTION BY BALLS WITH EQUAL RADII
The paper focuses on the problem of constructing the thinnest covering for surfaces of revolution by equal balls whose radii are unknown in advance. A heuristic algorithm based on the joint applying the optical-geometric approach and the geodesic Voronoi diagram is proposed. Calculations for some surfaces of revolution, including a sphere, are carried out
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信