轮胎水滑:数值建模和新型传感方法综述

Alexandru Vilsan, Corina Sandu
{"title":"轮胎水滑:数值建模和新型传感方法综述","authors":"Alexandru Vilsan, Corina Sandu","doi":"10.1115/1.4065379","DOIUrl":null,"url":null,"abstract":"\n This article represents an extensive literature on tire hydroplaning, specifically focusing on the assessment of real-time estimation methodologies and numerical modeling for both partial and total hydroplaning phenomenon. Hydroplaning still poses a significant challenge for contemporary passenger cars, even those equipped with state of the art safety systems. The active safety features that equip the most technologically advanced passenger cars are unable to forecast and prevent the occurrence of hydroplaning. Total hydroplaning represents a phenomenon which occurs when the tire reaches a point where it can no longer expel the water from its tread grooves, leading to a complete control loss of the motor vehicle. This describes a scenario in which the entire contact patch is lifted from the ground due to the hydrodynamic forces generated at the contact between the tire and the layer of water formed on the road. Nevertheless, the decrease in contact between the tire and the road surface occurs gradually, a phenomenon which is presented in literature as partial hydroplaning. The longitudinal speed that marks the transition from partial hydroplaning to total hydroplaning is defined as the critical hydroplaning speed. These principles are widely acknowledged among researchers in the hydroplaning field. Nonetheless, the literature review reveals variations for defining the critical hydroplaning speed threshold across different experimental investigations. In this article, past studies, and state-of-the-art research on tire hydroplaning has been reviewed, especially focusing on real-time estimation methodologies and numerical modeling of the partial and of the total hydroplaning phenomenon.","PeriodicalId":164923,"journal":{"name":"Journal of Autonomous Vehicles and Systems","volume":"34 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HYDROPLANING OF TIRES: A REVIEW OF NUMERICAL MODELING AND NOVEL SENSING METHODS\",\"authors\":\"Alexandru Vilsan, Corina Sandu\",\"doi\":\"10.1115/1.4065379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article represents an extensive literature on tire hydroplaning, specifically focusing on the assessment of real-time estimation methodologies and numerical modeling for both partial and total hydroplaning phenomenon. Hydroplaning still poses a significant challenge for contemporary passenger cars, even those equipped with state of the art safety systems. The active safety features that equip the most technologically advanced passenger cars are unable to forecast and prevent the occurrence of hydroplaning. Total hydroplaning represents a phenomenon which occurs when the tire reaches a point where it can no longer expel the water from its tread grooves, leading to a complete control loss of the motor vehicle. This describes a scenario in which the entire contact patch is lifted from the ground due to the hydrodynamic forces generated at the contact between the tire and the layer of water formed on the road. Nevertheless, the decrease in contact between the tire and the road surface occurs gradually, a phenomenon which is presented in literature as partial hydroplaning. The longitudinal speed that marks the transition from partial hydroplaning to total hydroplaning is defined as the critical hydroplaning speed. These principles are widely acknowledged among researchers in the hydroplaning field. Nonetheless, the literature review reveals variations for defining the critical hydroplaning speed threshold across different experimental investigations. In this article, past studies, and state-of-the-art research on tire hydroplaning has been reviewed, especially focusing on real-time estimation methodologies and numerical modeling of the partial and of the total hydroplaning phenomenon.\",\"PeriodicalId\":164923,\"journal\":{\"name\":\"Journal of Autonomous Vehicles and Systems\",\"volume\":\"34 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Autonomous Vehicles and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Vehicles and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文收录了大量有关轮胎侧滑的文献,尤其侧重于对部分和全部侧滑现象的实时估算方法和数值建模进行评估。对于当代乘用车而言,即使是配备了最先进安全系统的乘用车,轮胎水滑仍是一项重大挑战。技术最先进的乘用车所配备的主动安全功能无法预测和防止发生侧滑。完全水滑是指轮胎达到一定程度,无法再将水从胎面沟槽中排出,从而导致机动车完全失控的现象。在这种情况下,由于轮胎与路面上形成的水层接触时产生的流体动力,整个接触面都会脱离地面。然而,轮胎与路面之间的接触面积会逐渐减小,这种现象在文献中被称为部分侧滑。从部分水漂过渡到完全水漂的纵向速度被定义为临界水漂速度。这些原则得到了水踏领域研究人员的广泛认可。然而,文献综述显示,不同的实验研究对临界水踏速度阈值的定义存在差异。本文综述了以往的研究和有关轮胎水踏的最新研究成果,尤其侧重于部分和全部水踏现象的实时估算方法和数值建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HYDROPLANING OF TIRES: A REVIEW OF NUMERICAL MODELING AND NOVEL SENSING METHODS
This article represents an extensive literature on tire hydroplaning, specifically focusing on the assessment of real-time estimation methodologies and numerical modeling for both partial and total hydroplaning phenomenon. Hydroplaning still poses a significant challenge for contemporary passenger cars, even those equipped with state of the art safety systems. The active safety features that equip the most technologically advanced passenger cars are unable to forecast and prevent the occurrence of hydroplaning. Total hydroplaning represents a phenomenon which occurs when the tire reaches a point where it can no longer expel the water from its tread grooves, leading to a complete control loss of the motor vehicle. This describes a scenario in which the entire contact patch is lifted from the ground due to the hydrodynamic forces generated at the contact between the tire and the layer of water formed on the road. Nevertheless, the decrease in contact between the tire and the road surface occurs gradually, a phenomenon which is presented in literature as partial hydroplaning. The longitudinal speed that marks the transition from partial hydroplaning to total hydroplaning is defined as the critical hydroplaning speed. These principles are widely acknowledged among researchers in the hydroplaning field. Nonetheless, the literature review reveals variations for defining the critical hydroplaning speed threshold across different experimental investigations. In this article, past studies, and state-of-the-art research on tire hydroplaning has been reviewed, especially focusing on real-time estimation methodologies and numerical modeling of the partial and of the total hydroplaning phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信